Tìm số tự nhiên n sao cho
a,n+3 chia hết cho n-1
b,4n+3 chia hết cho 2n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
\(a,\Rightarrow n-1+7⋮n-1\)
Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)
\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)
Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)
n-1=1\(\Rightarrow\)n=2
n-1=2\(\Rightarrow\)n=3
n-1=4\(\Rightarrow\)n=5
Vậy n\(\in\){2;3;5}
b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}
2n-1=1\(\Rightarrow\)n=1
2n-1=5\(\Rightarrow\)n=3
Vậy n\(\in\){1;3}
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
\(a,n+3⋮n-1\)
\(n-1+2⋮n-1\)
\(2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng xét g trị
n-1 | 1 | -1 | 2 | -2 |
n | 2 | 0 | 3 | -1 |
Vì \(n\in N\)
\(\Rightarrow n=2;0;3\)
\(b,4n+3⋮2n+1\)
\(2.\left(2n+1\right)⋮2n+1\Rightarrow4n+2⋮2n+1\)
\(\Rightarrow\left(4n+3\right)-\left(4n+2\right)⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 |
2n | 0 | -2 |
n | 0 | -1 |
Vì \(n\in N\)
\(\Rightarrow n=0\)
\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)
a)n+3 chia hết cho n-1
(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1 hay n-1EƯ(4)={1;4}
=>nE{2;5}
b)4n+3 chia hết cho 2n+1
4n+2+1 chia hết cho 2n+1
2(2n+1)+1 chia hết cho 2n+1
=>1 chia hết cho 2n+1 hay 2n+1EƯ(1)={1}
=>2n=0
n=0/2
n=0
Vậy n=0