K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

a)n+3 chia hết cho n-1

(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1 hay n-1EƯ(4)={1;4}

=>nE{2;5}

b)4n+3 chia hết cho 2n+1

4n+2+1 chia hết cho 2n+1

2(2n+1)+1 chia hết cho 2n+1

=>1 chia hết cho 2n+1 hay 2n+1EƯ(1)={1}

=>2n=0

n=0/2

n=0

Vậy n=0

25 tháng 12 2020

Ta có: n+3 chia hết cho n-1

mà: n-1 chia hết cho n-1

suy ra:[(n+3)-(n-1)]chia hết cho n-1

              (n+3-n+1)chia hết cho n-1

                        4    chia hết cho n-1

                  suy ra n-1 thuộc Ư(4)

           Ư(4)={1;2;4}

suy ra n-1 thuộc {1;2;4}

Ta có bảng sau:

n-1          1             2           4

n              2             3           5

    Vậy n=2 hoặc n=3 hoặc n=5 

 

25 tháng 12 2020

cảm ơn bạn nhaok

17 tháng 12 2022

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{1;0;2\right\}\)

b: =>6n-4+11 chia hết cho 3n-2

=>\(3n-2\in\left\{1;-1;11;-11\right\}\)

=>\(n\in\left\{1\right\}\)

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

31 tháng 10 2021

\(a,\Rightarrow n-1+7⋮n-1\)

Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)

\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)

Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)

28 tháng 10 2021

a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;4\right\}\)

b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)

\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{0;3\right\}\)

10 tháng 12 2015

a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)

n-1=1\(\Rightarrow\)n=2

n-1=2\(\Rightarrow\)n=3

n-1=4\(\Rightarrow\)n=5

Vậy n\(\in\){2;3;5}

b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}

2n-1=1\(\Rightarrow\)n=1

2n-1=5\(\Rightarrow\)n=3

Vậy n\(\in\){1;3}

22 tháng 11 2020

a, \(2n+7⋮n+1\)

\(2\left(n+1\right)+5⋮n+1\)

\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n + 11-15-5
n0-24-6

b, \(4n+9⋮2n+3\)

\(2\left(2n+3\right)+3⋮2n+3\)

\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

2n + 31-13-3
2n-2-40-6
n-1-20-3
14 tháng 12 2020

4-3=2 yêu anh ko hề sai

\(a,n+3⋮n-1\)

\(n-1+2⋮n-1\)

\(2⋮n-1\)

\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng xét g trị 

n-11-12-2
n203-1

Vì \(n\in N\)

\(\Rightarrow n=2;0;3\)

\(b,4n+3⋮2n+1\)

\(2.\left(2n+1\right)⋮2n+1\Rightarrow4n+2⋮2n+1\)

\(\Rightarrow\left(4n+3\right)-\left(4n+2\right)⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta lập bảng xét g trị 

2n+11-1
2n0-2
n0-1

Vì \(n\in N\)

\(\Rightarrow n=0\)

24 tháng 9 2021

\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)