Chứng minh rằng: \(x^2=\frac{x^2+y^2-1+2xy}{x^2-y^2+z+2x}=\frac{x+y-1}{x-y+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp Dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)
^_^
Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)
\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)
+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
\(\Rightarrow\)ĐPCM
hên xui thôi -_-
Áp dụng BĐT Cauchy-schwarz dạng engel,ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)
\(\Rightarrowđpcm\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)
\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
áp dụng bổ đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)(bạn dùng cô-si,xét tích \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\))
\(\Leftrightarrow\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2xz}\ge\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1^2}\)
1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)
M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)
M đạt GTLN khi a=1, b=2 hay x=2; y= 8
2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)
x=-4 => (y+4)2 =4 <=> y = -2;y = -6
x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)
x=0 => y2 = 4 => y =2; =-2
vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)
3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh
3) sửa lại
áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))
dấu '=' khi x=y=z
Bạn tự c/m BĐT : \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
Dấu " = " xảy ra ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2yz+2zx}+\frac{1}{z^2+2xy}\)\(\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1}=9\)
Bạn tự giải dấu bằng nhé.