Một tấm bìa hình chữ nhật có kích 75 cm và 105 cm.Ta muốn cắt tấm bìa thành những mảnh hình vuông nhỏ bằng sao cho tấm bìa được cắt hết không thừa mảnh vụn.Tính độ dài lớn nhất của hình vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì cắt tấm bìa thành những hình vuông nhỏ bằng nhau nên độ dài cạnh hình vuông là ước chung của \(75,105\).
Mà ta cần tìm độ dài lớn nhất nên nó là \(ƯCLN\left(75,105\right)\).
Phân tích thành tích các thừa số nguyên tố: \(75=3.5^2,105=3.5.7\)
Suy ra \(ƯCLN\left(75,105\right)=3.5=15\)
Vậy độ dài lớn nhất của cạnh hình vuông là \(15cm\).
Gọi x (cm) là độ dài lớn nhất của cạnh hình vuông có thể cắt (x ∈ ℕ)
⇒x = ƯCLN(75; 105)
75 = 3.5²
105 = 3.5.7
⇒ x = ƯCLN(75; 105) = 3.5 = 15
Vậy cạnh hình vuông lớn nhất có thể cắt là 15 cm
Gọi độ dài lớn nhất của miếng bìa là a
Ta có : 75 chia hết cho a
105 chia hết cho a \(\Rightarrow\)a là ƯCLN ( 75, 105 )
a là số lớn nhất
75 = 3.52
105 = 3.7.5
ƯCLN ( 75, 105 ) = 3.5 = 15
Vậy độ dài lớn nhất của cạnh hình vuông là : 15 ( cm )
Đáp số : 15cm
ĐỂ CẮT HẾT TẤM BÌA THÀNH NHỮNG HÌNH VUÔNG BẰNG NHAU THÌ ĐỘ DÀI CẠNH HÌNH VUÔNG PHẢI LÀ 1 ƯỚC CỦA CHIỀU RỘNG VÀ CHIỀU DÀI CỦA TẤM BIÀ . DO ĐÓ MUỐN CHO CẠNH HÌNH VUÔNG LÀ LỚN NHẤT THÌ ĐỘ DÀI CỦA CẠNH PHẢI LÀ ƯCLN(75;105) .
- TA CÓ : 75 = 3 . 5 ^2 ; 105 =3.5.7 NÊN ƯCLN (75;105)=15
Đ/S:15CM
Muốn cắt tấm bìa 75x105 thành các hình vuông bằng nhau mà không thừa mảnh nào (và cạnh hình vuông là 1 số tự nhiên) thì độ dài cạnh hình vuông phải là ước chung của 75 và 105.
Vậy độ dài lớn nhất của cạnh hình vuông có thể cắt được chính là ước chung lớn nhất của 75 và 105
75=3.5^2
105=3.5.7
ƯCLN(75,105)=3.5=15
Độ dài lớn nhất của cạnh hình vuông có thể cắt được là 15 cm.
Nhớ k đúng cho mình nhé!
Cạnh hình vuông là ước số chung lớn nhất của 75 và 105.
* Ước số đó là một số tự nhiên.
75 = 25 nhân 3 = 5 nhân 5 nhân 3
105 = 15 nhân 7 = 7 nhân 5 nhân 3
<=> ước số chung của 75 và 105 là 5 nhân 3 = 15
Tấm bìa chữ nhật cắt chiều rộng 75cm ra làm 5 phần, mỗi phần 15cm
cắt chiều dài 105cm ra làm 7 phần, mỗi phần 15cm
diện tích hình chữ nhật = 7875cm²
diện tích hình vuông = 225cm²
Số hình vuông cắt được: 7675 chia 225 = 35 tấm
Đáp số:
Cắt được 35 bìa hình vuông, mỗi cạnh của hình vuông là 15cm.
Ai thấy đúng k cho mk nha!
Gọi độ dài lớn nhất của cạnh hình vuông là a ( cm )
Theo đề bài
=> 75 chia hết cho a và 105 chia hết cho a , mà a lớn nhất
=> a = UWCLN ( 75 , 105 )
Ta có
=> 75 = 3 . 52
105 = 3 .5 .7
=> ƯCLN ( 75 , 105 ) = 3 . 5 = 15
=> a = 15
=> Độ dài lớn nhất của cạnh hình vuông là : 15 cm
Muốn cắt tấm bìa 75x105 thành các hình vuông bằng nhau mà không thừa mảnh nào (và cạnh hình vuông là 1 số tự nhiên) thì độ dài cạnh hình vuông phải là ước chung của 75 và 105.
Vậy độ dài lớn nhất của cạnh hình vuông có thể cắt được chính là ước chung lớn nhất của 75 và 105
75=3.5^2
105=3.5.7
ƯCLN(75,105)=3.5=15
Độ dài lớn nhất của cạnh hình vuông có thể cắt được là 15 cm.
đúng thì ****
Điều kiện:
* Cạnh hình vuông là ước số chung lớn nhất của 75 và 105.
* Ước số đó là một số tự nhiên.
75 = 25 nhân 3 = 5 nhân 5 nhân 3
105 = 15 nhân 7 = 7 nhân 5 nhân 3
<=> ước số chung của 75 và 105 là 5 nhân 3 = 15
Tấm bìa chữ nhật cắt chiều rộng 75cm ra làm 5 phần, mỗi phần 15cm
cắt chiều dài 105cm ra làm 7 phần, mỗi phần 15cm
diện tích hình chữ nhật = 7875cm²
diện tích hình vuông = 225cm²
Số hình vuông cắt được: 7675 chia 225 = 35 tấm
Đáp số:
Cắt được 35 bìa hình vuông, mỗi cạnh của hình vuông là 15cm.
Chào bạn nha :>> Nếu thấy đúng cho mik nha :>>
- Để cắt hết tấm bìa thành những hình vuông bằng nhau thì độ dài cạnh hình vuông phải là 1 ước chung của chiều rộng và chiều dài của tấm bìa đó . Do đó muốn cho cạnh hình vuông là lớn nhất thì độ dài của cạnh phải là ƯCLN ( 75,105 )
Vì 75 = 3 . 52 ; 105 = 3 . 5 . 7 nên ƯCLN ( 75 , 105 ) = 15
Đ/S : 15 cm