Cho tam giác ABC vuông cân ,AB=3cm,M nằm trong tam giác sao cho AM=2cm và góc AMC=135 độ.Tính MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên nửa mặt phẳng bờ AM không chứa điểm B vẽ tam giác ADM vuông cân tại A
Ta có : \(\widehat{DMC}=\widehat{AMC}-\widehat{AMD}=90^o\)
\(\Rightarrow\)\(\Delta ADC=\Delta AMC\left(c.g.c\right)\)
\(\Rightarrow\)DC = MB = 3cm
Xét \(\Delta AMD\)vuông tại A, theo định lí Py-ta-go, ta có :
MD2 = MA2 + AD2 = 22 + 22 = 8
Xét \(\Delta MCD\)vuông tại M , theo định lí Py-ta-go, ta có :
CD2 = MD2 + MC2 \(\Rightarrow\)MC2 = CD2 - MD2 \(\Rightarrow\)MC2 = 32 - 8 = 1 \(\Rightarrow\)MC = 1 cm
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Answer:
D C B M A
Trên nửa mặt phẳng bờ AM không chứa B xác định điểm D sao cho tam giác ADM vuông cân tại A
Lúc này AD = AM = 2cm và góc AMD = 45 độ
=> Góc DMC = góc AMC - góc AMD = 135 độ - 45 độ = 90 độ
Ta xét tam giác ADC và tam giác AMB:
AC = AB (gt)
AD = AM
Góc DAC = góc MAB
=> Tam giác ADC = tam giác AMB (c.g.c)
=> BM = CD = 3cm
Ta xét tam giác ADM vuông tại A, áp dụng định lý Pytago:
\(MD^2=MA^2+AD^2=2^2+2^2=8\)
Ta xét tam giác MDC vuông tại M, áp dụng định lý Pytago:
\(CD^2=MD^2+MC^2\Rightarrow3^2=8+MC^2\Rightarrow MC=1cm\)