K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

4 tháng 10 2017

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.

14 tháng 11 2015

Áp dụng \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{3x+3y+2z}=\frac{1}{2\left(x+y\right)+\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}.\frac{1}{2\left(x+y\right)}+\frac{1}{4}.\frac{1}{x+z+y+z}\le\frac{1}{8\left(x+y\right)}+\frac{1}{4}.\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

24 tháng 5 2020

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)

Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:

\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)

\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)

Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)

Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)

\(\le1+\frac{2017}{3}=\frac{2020}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

12 tháng 7 2020

\(\frac{1}{3x+2y+z}=\frac{1}{x+x+x+y+y+z}\le\frac{1}{6^2}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{36}\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Tương tự thì ta có: 

\(\frac{1}{3x+2y+z}+\frac{1}{x+3y+2z}+\frac{1}{y+3z+2x}\)

\(\le\frac{1}{36}\left(\frac{3}{x}+\frac{2}{y}+\frac{1}{z}\right)+\frac{1}{36}\left(\frac{1}{x}+\frac{3}{y}+\frac{2}{z}\right)+\frac{1}{36}\left(\frac{1}{y}+\frac{3}{z}+\frac{2}{x}\right)\)

\(=\frac{6}{36}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{16}{6}=\frac{8}{3}\)

Dấu "=" xảy ra <=> x = y = z = 3/16

6 tháng 8 2020

Do x+y+z=3 nên: \(3x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\)

tương tự và thay vào biểu thức

\(\Rightarrow A=\frac{x}{x+\sqrt{\left(x+z\right)\left(x+y\right)}}+\frac{y}{y+\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bđt Bunyakovsky:

\(A\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{xz}+\sqrt{yz}}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

26 tháng 5 2018

Ta có:\(\left(9x^3+3y^2+z\right)\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\dfrac{x}{9x^3+3y^2+z}\le\dfrac{x\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{x}{3}+xz}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng theo vế:

\(Σ_{cyc}\dfrac{x}{9x^3+3y^2+z}\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+xy+yz+xz}{\left(x+y+z\right)^2}\)

\(\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+\dfrac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)

Lại có: \(2017\left(xy+yz+xz\right)\le2017\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2017}{3}\)

\(\Rightarrow A\le\dfrac{2020}{3}\)

Dấu "=" khi \(x=y=z=\dfrac{1}{3}\)

Vậy ko ra yếu zzzz

26 tháng 5 2018

c-s dưới mẫu xem

28 tháng 1 2017

\(I\)\(Don't\)\(know\)

30 tháng 1 2017

Áp dụng BĐT Cauchy-Schwarz ta có: VT\le \sqrt{3\sum \frac{x}{z+3x}}

Ta cần chứng minh \sum \frac{x}{z+3x} \leq \frac{3}{4}

\leftrightarrow \sum \frac{3x}{z+3x} \leq \frac{9}{4}

\leftrightarrow \sum(1-\frac{3x}{z+3x}) \geq \frac{3}{4}

\leftrightarrow \sum \frac{z}{z+3x} \geq \frac{3}{4}

Áp dụng BĐT Cauchy-Schwarz ta có: 

\sum \frac{z}{z+3x}=\sum \frac{z^2}{z^2+3xz} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+3(xy+yz+zx)}=\frac{(x+y+z)^2}{(x+y+z)^2+xy+yz+zx} \geq \frac{(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=\frac{3}{4}

Dấu "=" xảy ra khi x=y=z

P/s:OLM chặn paste r` mà có vài công thức OLM ko có nên mk ko paste dc đành gõ = latex thông cảm, trách thì trách OLM, ko hiểu dc thì bảo Ad dịch hộ