K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

mk^ng biet nhug tk minh

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
10 tháng 1 2017

C A B D E M N O I

Gọi O là giao điểm của CM và AD; I là giao điểm của CN và BE.

Do AD là tia phân giác góc A nên ta thấy ngay \(\Delta ACD=\Delta AMD\) (Cạnh huyền góc nhọn)

Vậy thì AC = AM; DC = DM hay AD là trung trực của CM. Vậy nên \(\widehat{COD}=90^o.\)

Từ đó ta có \(\widehat{OCD}+\widehat{CDO}=90^o\)  mà \(\widehat{CAD}+\widehat{CDO}=90^o\Rightarrow\widehat{OCD}=\widehat{CAD}=\frac{\widehat{CAB}}{2}\)

Hoàn toàn tương tự \(\widehat{ACN}=\frac{\widehat{ABC}}{2}\)

Ta có \(\widehat{ABC}+\widehat{BAC}=90^o\Rightarrow2\widehat{ACN}+2\widehat{BCM}=90^o\)

\(\Rightarrow\widehat{ACN}+\widehat{BCM}=45^o\Rightarrow\widehat{MCN}=90^o-45^o=45^o.\)

10 tháng 1 2017

45bạn ạ, hihi^_^,tk mÌNH nha

19 tháng 5 2022

undefined

a/ Xét \(\Delta\) vuông AHD và \(\Delta\) AED. Có:

\(\widehat{A1}\)\(\widehat{A2}\) ( giả thiết)

AD chung

=> \(\Delta AHD=\Delta AED\) ( ch-gn)

=> DH = DE ( 2 cạnh tương ứng )

b/ BMC không cân được bạn nhé. bạn chép nhầm đề bài r: Chứng minh DMC cân mới đúng.

Xét \(\Delta vuôngHDM\) và \(\Delta vuôngEDC\). Có:

\(\widehat{D1}\) = \(\widehat{D2}\) ( đối đỉnh)

HD = HE ( cmt)

=> \(\Delta HDM=\Delta EDC\left(cgv-gnk\right)\)

=> DM = DC ( 2 cạnh tương ứng)

=> Xét \(\Delta DMCcóDM=DC=>\Delta DMCcân\left(cântạiD\right)\)

~ Cậu ktra lại nhé~

 

a: Ta có:ΔABC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BAC}+50^0=90^0\)

=>\(\widehat{BAC}=40^0\)

b: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có

AB chung

\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)

Do đó: ΔFAB=ΔEBA

d: Sửa đề: I là trung điểm của BA

Xét tứ giác AFBE có

AF//BE

AE//BF

Do đó: AFBE là hình bình hành

=>AB cắt FE tại trung điểm của mỗi đường

mà I là trung điểm của AB

nên I là trung điểm của FE

=>F,I,E thẳng hàng

12 tháng 1

hình vẽ đâu bạn 

29 tháng 1 2018

âu trả lời hay nhất:  xét tứ giác ABDM 
có ^A=90 o ( tam giác ABC vuông tại A theo gt ) 
^D = 90 o ( gt ) 
=> ^A + ^D = 180 o 
=> t/g ABDM là t/g nội tiếp ( dhnb ) 
=> góc BAD = góc BMD ( góo nội tiếp cùng chắn cung BD ) 
lại có ^ BAD = 1/2 ^ BAC = 1/2 90 o = 45 o 
=> ^BMD = 45 o

p/s : kham khảo

29 tháng 1 2018

Vẽ cả hình nữa chứ, bạn cố gắng vẽ giúp mk cái hình với !