K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

\(A=\frac{1}{10}-\left(\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}\right)=\frac{1}{10}-\left(\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{9.10}\right)\)

\(=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...-\frac{1}{10}\right)=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{10}\right)=\frac{1}{5}-\frac{1}{4}=\frac{-1}{20}\)

12 tháng 1 2020

\(A=\frac{1}{10}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)

\(A=\frac{1}{10}-\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}\right)\)

\(A=\frac{1}{10}-\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\right)\)

\(A=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=\frac{1}{10}-\left[\left(\frac{1}{4}-\frac{1}{10}\right)-\left(\frac{1}{5}-\frac{1}{5}\right)-...-\left(\frac{1}{9}-\frac{1}{9}\right)\right]\)

\(A=\frac{1}{10}-\frac{1}{4}+\frac{1}{10}\)

\(A=\frac{1}{5}-\frac{1}{4}\)

\(A=-\frac{1}{20}\)

17 tháng 4 2017

A = \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)\(\frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)

17 tháng 4 2017

\(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\)

\(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)\

\(A=\frac{1}{3}-\frac{1}{10}\)

\(A=\frac{7}{30}\)

19 tháng 4 2017

B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90

B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

B = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

B = \(\frac{1}{2}-\frac{1}{10}\)

B = \(\frac{2}{5}\)

19 tháng 4 2017

B=1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90

B=1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10

B=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10

B=1/2-1/10

B=2/5

13 tháng 6 2020

\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)

\(A=-\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)

\(A=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=-\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(A=\frac{-3}{20}\)

14 tháng 10 2016

\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)

\(A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)

\(A=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(A=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)

\(A=\frac{9}{10}-\frac{9}{10}=0\)

14 tháng 10 2016

\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)

\(\Leftrightarrow A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)

\(\Leftrightarrow A=\frac{9}{10}-\frac{9}{10}\)

\(\Leftrightarrow A=0\)

5 tháng 5 2016

A = 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12

= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/11 - 1/12

= 1/5 - 1/12

= 12/60 - 5/60

= 7/60

Vậy A = 7/60.

5 tháng 5 2016

Xét A , ta thấy:

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

Ta lại thấy: \(\frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)

\(\frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)

....................

\(\frac{1}{11.12}=\frac{1}{11}-\frac{1}{12}\)

\(A=\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+....+\left(\frac{1}{11}-\frac{1}{12}\right)\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+....+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

9/1-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2=0/4

26 tháng 5 2016

Giải :

ta có

  \(\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)

=\(\frac{9}{10}-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{9\times10}\right)\)

=\(\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

=\(\frac{9}{10}-\left[1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\right]\)

=\(\frac{9}{10}-\left(1-\frac{1}{10}\right)\)

=\(\frac{9}{10}-1+\frac{1}{10}=0\)                  (Mong online math ks cho mình nhé)

25 tháng 3 2016

A= \(\frac{-1}{4\cdot5}+\frac{-1}{5\cdot6}+\frac{-1}{6\cdot7}+\frac{-1}{7\cdot8}+\frac{-1}{8\cdot9}+\frac{-1}{9\cdot10}\)

=\(-1\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)

=\(-1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)

=\(-1\left(\frac{1}{4}-\frac{1}{10}\right)\)

=\(-1\cdot\frac{3}{20}\)

=\(\frac{-3}{20}\)

=\(\frac{-1}{20}\)

25 tháng 3 2016

phân tích mẫu: 20=4.5 , 30= 5.6 , 42=6.7 tương tự rồi tách cả phân số là được

 

13 tháng 7 2018

\(A=-\frac{1}{20}+-\frac{1}{30}+-\frac{1}{42}+-\frac{1}{56}+-\frac{1}{72}+-\frac{1}{90}\)

\(\Rightarrow A=-1\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{9.10}\right)\)

\(A=-1\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(\Rightarrow A=-\frac{3}{20}\)

13 tháng 7 2018

\(A=\frac{-1}{20}-\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)

\(A=-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(A=-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=-\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(A=\frac{-3}{20}\)

#