Cho P(x) là một đa thức sao cho P(\(x^2-1\))=\(x^4-3x^2+3\). Tìm P(x)
Giup mk nhanh nha, mk đg cần rất gấp, mk xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
\(M\left(x\right)=-3x^2+6x-4+2x^2-5x+4=-x^2+x\)
Đặt M(x)=0
=>-x(x-1)=0
=>x=0 hoặc x=1
\(M\left(x\right)=-x^2+x=-x\left(x-1\right)\)
Giả sử: \(M\left(x\right)=0\)
\(\Leftrightarrow-x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
Giả sử có só nguyên x để:
\(2x+3⋮3x+2\)
\(\Rightarrow3\left(2x+3\right)⋮3x+2\)
\(\Leftrightarrow6x+9⋮3x+2\)
\(\Leftrightarrow2\left(3x+2\right)+5⋮3x+2\)
Do \(3x+2⋮3x+2\) nên \(5⋮3x+2\).
Suy ra \(3x+2\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\).
\(3x+2=-1\Leftrightarrow x=-1\) (thỏa mãn)
\(3x+2=1\Leftrightarrow x=-\frac{1}{3}\) (loại).
\(3x+2=5\Leftrightarrow x=1\) (thỏa mãn).
\(3x+2=-5\Leftrightarrow x=-\frac{7}{3}\) (loại).
vậy \(x=-1,x=1\) là các giá trị cần tìm.
Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.
Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)
\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)
\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)
Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)
Dễ thấy P(x) là đa thức bậc 2 nên có dạng: \(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow P\left(x^2-1\right)=a\left(x^2-1\right)^2+b\left(x^2-1\right)+c\)
\(=ax^4+\left(b-2a\right)x^2+a-b+c=x^4-3x^2+3\)
Đồng nhất hệ số: \(a=1;b-2a=-3;a-b+c=3\Rightarrow a=1;b=-1;c=1\)
Vậy: \(P\left(x\right)=x^2-x+1\)
P/s; Lâu rồi không làm nên ko rõ cách trình bày=>hướng dẫn sương sương thôi nhé!:))