Cho ∆ABC vuông tại A. Gọi M,N lần lượt là trung điểm của AB và BC. Trên tia đối của NM lấy điểm D sao cho MN=ND.
a, Chứng minh BM=CD
b, Chứng minh CD vuông góc với AC
c, Chứng minh AC=2.MN và MD//AC
Nhanh tui tích cho!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó:AMCD là hình bình hành
Suy ra: CD//AM và CD=AM
=>CD//MB và CD=MB
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=1/2BC
a: \(BC=\sqrt{6^2+3^2}=3\sqrt{5}\left(cm\right)\)
\(BM=\sqrt{6^2+1.5^2}=\dfrac{3\sqrt{17}}{2}\left(cm\right)\)
b: Xét tứ giác ABCD có
M là trung điểm của BD
M là trung điểm của AC
Do đó: ABCD là hình bình hành
Suy ra: AB=CD và CD//AB
hay CD\(\perp\)AC
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
bài này, nếu giải theo theo kiến thức lớp 8 thì quá dễ luôn
Câu a đề sai nhé, phải là BM = CD mới đúng
a) Xét tam giác ANM và tam giác CND có:
AN = CN ( N là trung điểm của AC)
Góc MNA = góc DNC ( đối đỉnh)
NM = ND (gt)
=> Tam giác ANM = tam giác CND (c-g-c)
=> AM = CD (2 cạnh tương ứng)
Mà AM = BM (M là trung điểm của AB)
=> CD = BM
b) Ta có: M là trung điểm của AB (gt)
N là trung điểm của AC ( gt)
=> MN là đường trung bình của tam giác ABC
=> MN=1/2BC
MN//BC
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//DC
=>DC vuông góc CA
b: AB+BC=CB+CD>BD=2BM
c: CB>CD
=>góc CBM<góc CDM=góc ABM
a: Xét tứ giác ABCD co
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>CD vuông góc AC
b: AB+BC=AB+AD>BD=2BM
c: góc ABM=góc CDB
mà góc CDB>góc CBM
nên góc ABM>góc CBM