Tìm x,y
1+2013x /60 = 1+2015x /5y = 1+2017x /4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1+2013x}{60}=\frac{1+2017x}{4y}=\frac{1+2013x+1+2017x}{60+4y}=\frac{2+4030x}{60+4y}\)
\(=\frac{2\left(1+2015x\right)}{2\left(30+2y\right)}=\frac{1+2015x}{30+2y}\)
mà \(\frac{1+2013x}{60}=\frac{1+2015x}{5y}=\frac{1+2017x}{4y}\)\(\Rightarrow\frac{1+2015x}{5y}=\frac{1+2015x}{30+2y}\)
\(\Rightarrow5y=30+2y\)\(\Leftrightarrow5y-2y=30\)\(\Leftrightarrow3y=30\)\(\Leftrightarrow y=10\)
Thay \(y=10\)vào biểu thức ta được:\(\frac{1+2013x}{60}=\frac{1+2015x}{5.10}=\frac{1+2015x}{50}\)
\(\Rightarrow50\left(1+2013x\right)=60\left(1+2015x\right)\)
\(\Leftrightarrow50+100650x=60+120900x\)\(\Leftrightarrow120900x-100650x=50-60\)
\(\Leftrightarrow20250=-10\)\(\Leftrightarrow x=\frac{-10}{20250}=\frac{-1}{2025}\)
Vậy \(x=\frac{-1}{2025}\)và \(y=10\)
\(\frac{1+2013x}{60}=\frac{1+2017x}{4y}=\frac{1+2013x+1+2017x}{60+4y}=\frac{2+4030x}{2\left(30+2y\right)}\)
\(=\frac{2\left(1+2015x\right)}{2\left(30+2y\right)}=\frac{1+2015x}{30+2y}=\frac{1+2015x}{5y}\)
\(\Leftrightarrow30+2y=5y\)\(\Leftrightarrow5y-2y=30\)\(\Leftrightarrow3y=30\)\(\Leftrightarrow y=10\)
Ta có: \(\frac{1+2013x}{60}=\frac{1+2015x}{50}\)\(\Rightarrow50\left(1+2013x\right)=60\left(1+2015x\right)\)
\(\Leftrightarrow5\left(1+2013x\right)=6\left(1+2015x\right)\)\(\Leftrightarrow5+10065x=6+12090x\)
\(\Leftrightarrow12090x-10065x=5-6\)\(\Leftrightarrow2025x=-1\)\(\Leftrightarrow x=\frac{-1}{2025}\)
Vậy \(x=\frac{-1}{2025}\)
PT <=> (2015x - 2014)3 = (2x - 2)3 + (2013x - 2012)3
<=> (2015x - 2014)3 = (2x - 2 + 2013x - 2012). [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]
<=> (2015x - 2014)3 = (2015x - 2014). [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]
<=> (2015x - 2014).[ (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]] = 0
<=> 2015.x - 2014 = 0 hoặc (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2] = 0
+) 2015x - 2014 = 0 => x = 2014/2015
+) (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2] = 0
<=> [(2x - 2) + (2013x - 2012)]2 - (2x - 2)2 + (2x - 2).(2013x - 2012) - (2013x - 2012)2 = 0
<=> 3. (2x - 2).(2013x - 2012) = 0
<=> 2x - 2 = 0 hoặc 2013x - 2012 = 0
<=> x = 1 hoặc x = 2012/2013
Vậy....
Ta có
x(1 - 3 + 5 - 7 +...+ 2013 - 2015) = 3024
<=> x[(1 - 3) + (5 - 7) + ... + (2013 - 2015)] = 3024
<=> x.(- 2).1008 = 3024
<=> x = - 1,5
a/ Với \(x=2016\Rightarrow2017=x+1\)
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)
\(A=2025-x=9\)
b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:
\(Q=2017-2016+2015-2014+...+3-2+1\)
\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)
\(Q=1009\)
Vì cứ 2 số tự nhiên thì tổng của chúng bằng -2x
Vậy dãy số trên có số số hạng là:
( 2015 - 1 ) : 2 + 1 = 1008 ( số hạng )
Dãy trên có số cặp là:
1008 : 2 = 504 ( cặp )
Do đó dãy trên có 504 số -2x
Ta được:\(x-3x+5x-7x+9x-11x+...+2013x-2015x=3024\)
\(\Leftrightarrow\left(-2x\right)+\left(-2x\right)+\left(-2x\right)+....+\left(-2x\right)=3024\)
Mà dãy này có 504 số -2x
\(\Leftrightarrow504.\left(-2x\right)=3024\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\)
Vậy x=-3