K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

Chọn (B)  45 °

4 tháng 5 2019

trả lời

oke đợi chút

hok tốt

cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối địnhb. MA^2+MB^2+MC^2+MD^2=4R^2c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là...
Đọc tiếp

cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:

A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định

b. MA^2+MB^2+MC^2+MD^2=4R^2

c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau

2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD

a,CM: Sahkb=Sacb+Sadb

b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ

3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat

5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ

7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.

nhờ các bạn ssieeu toán giải hộ mình với! thanks  nhiều

0
12 tháng 4 2017

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3



12 tháng 4 2017

Hướng dẫn giải:

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3