Cho x,y>0 x^2 +y^2 =1
Tìm GTNN -2xy/1+xy
Cô mình giao bài này nâng cao >_< giúp mik vs mai mik nộp òi :<<<<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\hept{\begin{cases}\left|x+y-15\right|\ge0\forall x,y\\\left|xy-56\right|\ge0\forall x,y\end{cases}}\)
\(\Rightarrow\left|x+y-15\right|+\left|xy-56\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y-15=0\\xy-56=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=15\\xy=56\end{cases}}\)
Đến đây lập pt bậc hai giải tiếp nha
bạn thử xệt trên google đi
chứ ở đây chắc không có ai làm cho bạn đâu
đề nó hại não lắm
\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)
\(=>11-3x+1=\frac{9}{2}-5+3,5x\)
\(=>-3x+12=3,5x-\frac{1}{2}\)
\(=>-3x-3,5x=-\frac{1}{2}-12\)
\(=>-6,5x=-12,5\)
\(=>x=\frac{-12,5}{-6,5}=\frac{25}{13}\)
Ủng hộ nha
\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)
\(11-3x+1=\frac{9}{2}-5+3,5x\)
\(12-3x=-\left(0,5\right)+3,5x\)
\(12,5-3x=3,5x\)
\(12,5=6,5x\)
\(x=12,5:6,5=\frac{25}{13}\)
Bài 1 dễ thì tự làm
Bài 2
\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0
\(\Rightarrow y=-x\)
\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)
Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)
a. 12xy2 - 8x2y = 4xy . (3y - 2x)
b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)
\(\left(a-x-y\right)^3-\left(a+x-y\right)^3\)
\(=\left[\left(a-x-y\right)-\left(a+x-y\right)\right]\left[\left(a-x-y\right)^2+\left(a-x-y\right)\left(a+x-y\right)+\left(a+x-y\right)^2\right]\)
\(=-2x.\left[a^2+x^2+y^2-2ax+2xy-2ay+\left(a-y\right)^2-x^2+a^2+x^2+y^2+2ax-2xy-2ay\right]\)
\(=-2x\left[a^2+x^2+y^2-2ax+2xy-2ay+a^2-2ay+y^2-x^2+a^2+x^2+y^2+2ax-2xy-2ay\right]\)
\(=-2x\left(3a^2+x^2+3y^2-4ay\right)\)
Thôi làm thế này đi:3
\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)
Áp dụng BĐT Cosi ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=-\frac{2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có:
\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:
\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )
\(\Rightarrow A\ge-1-2=-3\)
dấu "=" xảy ra khi:
\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )
vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)