K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Đề bài kiểu gì thế? Lê Thanh Thúy

27 tháng 12 2019

a) Xét 2 \(\Delta\) \(ABI\)\(DBI\) có:

\(AB=DB\left(gt\right)\)

\(\widehat{ABI}=\widehat{DBI}\) (vì \(BI\) là tia phân giác của \(\widehat{B}\))

Cạnh BI chung

=> \(\Delta ABI=\Delta DBI\left(c-g-c\right)\)

=> \(IA=ID\) (2 cạnh tương ứng).

b) Xem lại đề.

c) Theo câu a) ta có \(\Delta ABI=\Delta DBI.\)

=> \(\widehat{BAI}=\widehat{BDI}\) (2 góc tương ứng).

\(\widehat{BAI}=90^0\left(gt\right)\)

=> \(\widehat{BAI}=\widehat{BDI}=90^0.\)

Xét 2 \(\Delta\) vuông \(IAE\)\(IDC\) có:

\(\widehat{EAI}=\widehat{CDI}=90^0\)

\(IA=ID\left(cmt\right)\)

\(\widehat{AIE}=\widehat{DIC}\) (vì 2 góc đối đỉnh)

=> \(\Delta IAE=\Delta IDC\) (cạnh góc vuông - góc nhọn kề).

b) Vì \(BI\) là tia phân giác của \(\widehat{B}\left(gt\right)\)

=> \(BH\) là tia phân giác của \(\widehat{B}.\)

Theo câu c) ta có \(\Delta IAE=\Delta IDC.\)

=> \(AE=DC\) (2 cạnh tương ứng).

Ta có:

\(\left\{{}\begin{matrix}BA+AE=BE\\BD+DC=BC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\AE=DC\left(cmt\right)\end{matrix}\right.\)

=> \(BE=BC.\)

=> \(\Delta EBC\) cân tại B.

\(BH\) là đường phân giác (cmt).

=> \(BH\) đồng thời là đường cao của \(\Delta EBC.\)

=> \(BH\perp CE\left(đpcm\right).\)

Chúc bạn học tốt!

9 tháng 1 2019

- Ngu ít thôi =)

9 tháng 1 2019

A B C D I E

CM: a) Xét tam giác ABI và tam giác ADI

có AB = AD (gt)

góc BAI = góc IAD (gt)

AI : chung

=> tam giác ABI = tam giác ADI (c.g.c)

=> BI = ID (hai cạnh tương ứng)

b) Ta có: tam giác ABI = tam giác ADI (cmt)

=> góc ABI = góc ADI (hai góc tương ứng) (1)

Mà góc ABI + góc IBE = 1800 (2)

      góc ADI + góc IDC = 1800 (3)

Từ (1), (2),(3) suy ra góc IBE = góc IDC

Xét tam giác IBE và tam giác IDC

có góc EIB = góc DIC (đối đỉnh)

  IB = ID (cmt)

  góc IBE = góc IDC (cmt)

=> tam giác IBE = tam giác IDC

c,d tự làm

25 tháng 12 2021

a: Xét ΔADI và ΔBDI có

AD=BD

DI chung

AI=BI

Do đó: ΔADI=ΔBDI

3 tháng 3 2020

tham hảo nha:

https://hoidap247.com/cau-hoi/24991

# mui #

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(Đpcm)

b) Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE(cmt)

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=EC(hai cạnh tương ứng)

c) Ta có: BA+AK=BK(A nằm giữa B và K)

BE+EC=BC(E nằm giữa B và C)

mà BA=BE(cmt)

và AK=EC(cmt)

nên BK=BC

Ta có: ΔADK=ΔEDC(cmt)

nên DK=DC(hai cạnh tương ứng)

Ta có: M là trung điểm của CK(cmt)

nên MK=MC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: CM=KM(cmt)

nên M nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra B,D,M thẳng hàng(đpcm)

16 tháng 2 2021

.

9 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

          \(AB^2+AC^2=BC^2\)

=>\(BC^2\)=64+36=100(cm)

=>BC=10cm

vậy  BC=10cm

b,xét 2t.giác vuông ABE và DBE có:

          EB chung

          AB=BD(gt)

=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c,xét 2 t.giác vuông  AEF và t.giác DEC có:

            AE=DE(theo câu b)

            \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)

=>AF=DC mà BA=BD(gt) suy ra BF=BC

d,gọi O là giao điểm của BE và CF 

xét t.giác BFO và t.giác BCO có:

            BF=BC(theo câu c)

            \(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)

            BO cạnh chung

=> t.giác BFO=t.giác BCO(c.g.c)

=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)

Từ (1) và (2) suy ra BE là trung trực của CF

học tốt!

          

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

b: Xét ΔBEC có BE=BC

nên ΔBEC cân tại B

mà BI là đường phân giác

nên BI là đường cao

a: Xét ΔABD và ΔEBD có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

=>ΔBED vuông tại E

c: AD=DE

DE<DC

=>AD<DC

d: AB+EF=BE+EF

mà BE+EF>BF

nên AB+EF>BF