cho x+y+z=1, x^2+y^2+z^2=1, x^3+y^3+z^3=1 tính x^2009+y^2010+z^2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x+y+z=1
=> (x+y+z)3 =1
=> x3+y3+z3+3(x+y)(y+z)(x+z)=1
=> 1+ 3(x+y)(y+z)(x+z)=1
=> 3(x+y)(y+z)(x+z) =0
=> (x+y)(y+z)(x+z)=0
=> (x+y)=0 hoặc (y+z)=0 hoặc (x+z)=0
với x+y=0 => x=-y
thay x=-y vào x+y+z=1 ta được
z=1
thay x=-y vào x2+y2+z2=1
=> (-y)2+y2+z2=1
=> 2y2+1=1
=> 2y2=0
=> x=y=0
S=x2009+y2010+z2011
S= 0+0+1
S=1
Vậy S=1
Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)
Theo đề: \(x+y+z=1\Leftrightarrow x;y;z\le1\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\1-y\ge0\\1-z\ge0\end{matrix}\right.\)
\(\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)
Dấu bằng xảy ra khi: \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)=0\)
Kết hợp đk đầu bài x+y+z=1 suy ra x;y;z là hoán vị (0;0;1)
\(\Rightarrow S=1\)