Tìm giá trị nhỏ nhất của biểu thức:
\(B=x^2-2xy+2y^2+2x-4y-2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2018\)
\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
Giúp mk bài hình mk mới đăng với Nguyễn Việt Lâm Quản lý, ý b,c, d thôi
\(A=x^2+2xy+2y^2+2x-4y+2013\)
\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)
mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)
\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)
\(\Rightarrow Min\left(A\right)=2003\)
b: Tham khảo:
a: \(P=x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi x=5/2
Bài làm:
a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)
Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)
a) P = x2 - 5x
= ( x2 - 5x + 25/4 ) - 25/4
= ( x - 5/2 )2 - 25/4
( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4
Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2
=> MinF = -25/4 <=> x = 5/2
b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015
= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010
= [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010
= ( x + y - 1 )2 + ( y - 2 )2 + 2010
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
=> MinQ = 2010 <=> x = -1 , y = 2
biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?