Cho tam giác ABC có ba góc nhọn AB <AC. Vẽ trung điểm M của cạnh BC. Đường trung trực của BC cắt AC tại D
a. Chứng minh tam giác BMD băng tam giác CMD
b. Đường thẳng qua A song song BC cắt BD tại E. Đường thẳng MD cắt AE tại F. Chứng minh tam giác BEC bằng tam giác CAB
a) Xét \(\Delta\)DMB và \(\Delta\)DMC có:
DM chung
^DMB = ^DMC ( = 1v )
BM = MC ( M là trung điểm BC )
=> \(\Delta\)DMB = \(\Delta\)DMC ( c. g. c)
b) Từ (a) => ^DCM = ^DBM => ^ACB = ^EBC ( 1)
=> ^EAD = ^ACB = ^EBC = ^AED ( so le trong; AE// BC )
=> \(\Delta\)ADE cân tại D
=> DA = DE mà từ (a) => DB = DC
=> BE = AC ( 2)
Từ (1); (2) và cạnh BC chung
=> \(\Delta\)BEC = \(\Delta\)CAB.( c. g.c)