Cho tam giác ABC ngoại tiếp đường tròn tâm O Gọi I là tiếp điểm của BC với đường tròn tâm O biết AB . AC = 2IB.IC. tính số đo góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Vương Trương Quang - Toán lớp 9 - Học toán với OnlineMath
Câu hỏi của Vương Trương Quang - Toán lớp 9 - Học toán với OnlineMath
1. Vì BD, BF là các tiếp tuyến của (O) nên OD ⊥ BD, OF ⊥ BF.
Xét 2 tam giác vuông OBD và OBF có
O B chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)
⇒ BD = BF
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K.
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K. D O E = 90 o
Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:
D F E = 1 2 D O E = 45 o
⇒ ∆ KIF vuông cân tại K.
=>BIF=45o
a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:
I B K ^ = I C K ^ = 90 0
=> B, C, I, K ∈ đường tròn tâm O đường kính IK
b, Chứng minh
I
C
A
^
=
O
C
K
^
từ đó chứng minh được
O
C
A
^
=
90
0
Vậy AC là tiếp tuyến của (O)
c, Áp dụng Pytago vào tam giác vuông HAC => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm
a) CMR: 4 điểm B, I, C, K cùng thuộc (O).
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.
Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên CK là phân giác ngoài của góc C.
Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90
Chứng minh hoàn toàn tương tự ta có: ∠IBK=90
Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180
⇒BICK là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)
Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.
Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.
b) CMR: AC là tiếp tuyến của (O).
Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.
Mặt khác, theo tính chất góc ngoài của tam giác ta có :
∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC
⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.
Do đó AC là tiếp tuyến của (O) tại C (đpcm).
c) Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.
Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.
Ta có ngay :
S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)
= π.IK2/4 −(BM.IK)/2−(CM.IK)/2
=πIK2/4 − (BC.IK)/2
Ta có :
S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM
⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM
⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.
Áp dụng hệ thức lượng trong tam giác IBM vuông tại B có đường cao BM ta có :
BM2=IM.MK ⇔MK=BM2/IM=122/6=24
⇒IM=IM+MK=6+24=30.
⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.302 −1/2(24.30 ) =225π−360 ≈346,86 (dvdt)
Gọi M; N lần lượt là tiếp điểm của AB; AC với đường tròn.
=> BI = BM = b; AM = AN = a; CN = CI = c
Theo bài ra :
AB . AC = 2IB. IC
=> (AM + MB ) ( AN + NC) = 2IB . IC
=> ( a + b ) ( a + c ) = 2 bc
<=> a\(^2\)+ ab + ac + bc = 2bc
<=> a\(^2\)+ ab + ac = bc
<=> 2a\(^2\)+2ab + 2ac = 2bc
<=> ( a\(^2\)+ 2ab + b\(^2\)) + ( a\(^2\)+ 2ac + c\(^2\)) = b\(^2\)+ 2bc + c\(^2\)
<=> (a + b ) \(^2\)+ ( a+ c )\(^2\)= ( b + c ) \(^2\)
=> AB \(^2\)+ AC \(^2\)= BC \(^2\)
=> Tam giác ABC vuông tại A
=> ^A = 90 độ.
<=> (a2 +2ab+b2)+(a2+2ac+c2)=(b2+2bc+c2) bước này ở đâu và làm sao để xuất hiện b2 và c2 vậy ạ