K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ABM và ∆CME ta có : 

BM = MC ( M là trung điểm BC)

AM = ME 

AMB = CME ( đối đỉnh) 

=> ∆ABM = ∆CME(c.g.c)

b) Xét ∆AMC và ∆BME ta có : 

AM = ME 

BM = MC 

AMC = BME ( đối đỉnh) 

=> ∆AMC = ∆BME(c.g.c)

=> ACM = MBE 

Mà 2 góc này ở vị trí so le trong 

=> AC//BE 

c) Vì ∆AMB = ∆CME 

=> ABC = BCK 

Xét ∆IMB và ∆CMK ta có :

BM = MC 

BI = CK 

ABC = BCE (cmt)

=> ∆IMB = ∆CMK (c.g.c)

=> IMB = CMK 

Ta có : 

BMI + IMC = 180° ( kề bù) 

Mà IMB = CMK 

=> CMK + IMC = 180° 

=> IMK = 180° 

=> IMK là góc bẹt 

=> I , M , K thẳng hàng 

30 tháng 12 2016

Mjk tra loi cau a nka

B C M K

Mjk ve hoi xau, pn thong cam nka

Vì tam giác ABM và ACM có: 

M1=M2(đối đỉnh dok pn)

AM=MK(gt)

BM=MC( gt)

=> tam giác ABM=tam giác ACM(c.g.c)

k ve dc tam giac nho nen mjk phai ghi la tam giac lun ak

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

thế cũng nói!

26 tháng 12 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

b: Ta có: AB//CE

AB\(\perp\)AC

Do đó: CE\(\perp\)CA

=>ΔCAE vuông tại C

c: Xét ΔABC vuông tại A và ΔCEA vuông tại C có

CA chung

AB=CE

Do đó: ΔABC=ΔCEA

d: ta có: ΔABC=ΔCEA

=>BC=EA

mà \(AM=\dfrac{1}{2}EA\)

nên \(AM=\dfrac{1}{2}BC\)

e: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

f: Xét ΔMHC và ΔMKB có

MB=MC

\(\widehat{MBK}=\widehat{MCH}\)

BK=CH

Do đó: ΔMHC=ΔMKB

=>\(\widehat{HMC}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMC}=180^0\)(hai góc kề bù)

nên \(\widehat{HMC}+\widehat{KMC}=180^0\)

=>K,M,H thẳng hàng

25 tháng 12 2023

a) Ta có M là trung điểm của BC, vậy BM = MC. Vì MA = ME, nên ta có MA = ME = MC. Do đó, tam giác MEC là tam giác đều. 

Vì BM = MC và tam giác MEC là tam giác đều, nên ta có AB = EC và AB // EC.

 

b) Vì tam giác ABC là tam giác vuông tại A, nên góc BAC = 90 độ. 

Vì AB // EC, nên góc BAC = góc ECA. 

Vậy tam giác ACE cũng là tam giác vuông tại C.

 

c) Tam giác ABC và tam giác CEA có cạnh chung AC và góc AEC = góc BAC = 90 độ (vì tam giác ABC là tam giác vuông tại A). 

Vậy theo trường hợp góc - cạnh - góc, ta có tam giác ABC và tam giác CEA là hai tam giác đồng dạng.

 

d) Ta đã biết M là trung điểm của BC, vậy BM = MC. 

Vì MA = ME, nên MA = MC/2. 

Do đó, AM = 1/2 BC.

 

e) Ta đã biết AB = EC và AB // EC. 

Vì MA = ME, nên MA = MC. 

Vậy theo trường hợp cạnh - góc - cạnh, ta có tam giác MAC và tam giác MEC là hai tam giác đồng dạng. 

Vậy AC = BE và AC // BC.

 

f) Trên BE lấy K, trên AC lấy H sao cho BK = CH. 

Vì M là trung điểm của BC, nên MK = MC/2. 

Vì tam giác MEC là tam giác đều, nên góc MCE = 60 độ. 

Vậy góc MCK = 60 độ. 

Vì BK = CH, nên góc BKC = góc CHB. 

Vậy góc BKC = góc CHB = 60 độ. 

Vậy tam giác BKC và tam giác CHB là hai tam giác đều. 

Vậy 3 điểm K, M, H thẳng hàng.