Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 9 cm, DF = 12 cm a) Tính tỷ số lượng giác của góc E b) Tính độ dài DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
1 ) Do tam giác ABC cân tại A , AM là trung tuyến
=> AM là đường cao của BC
Lại có : BE là đường cao của AC
Mà BE cắt AM tại H
=> H là trực tâm của tam giác ABC .
=> CH vuông góc với AB
2 ) Vào mục câu hỏi hay :
Câu hỏi của Hỏa Long Natsu ( mình )
Chúc bạn học tốt !!!
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)
nên ΔDEF vuông tại D
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
\(1,\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{\sqrt{5}-2}=\dfrac{2\sqrt{5}-4+2\sqrt{5}+4}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}=4\sqrt{5}\\ 2,\)
a, \(EF=EH+FH=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}DE^2=HE\cdot EF=5\\DF^2=HF\cdot EF=20\\DH=FH\cdot EH=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}DE=\sqrt{5}\left(cm\right)\\DF=2\sqrt{5}\left(cm\right)\\DH=2\left(cm\right)\end{matrix}\right.\)
b, \(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{2\sqrt{5}}{5};\cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{\sqrt{5}}{5}\)
\(\tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{2\sqrt{5}}{\sqrt{5}}=2;\cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{1}{2}\)
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
\(a,EF=\sqrt{DE^2+DF^2}=15\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{9}{15}=\dfrac{3}{5}\\ \cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{12}{15}=\dfrac{4}{5}\\ \tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{9}{12}=\dfrac{3}{4}\\ \cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{4}{3}\\ b,Áp.dụng.HTL:DH\cdot EF=DE\cdot DF\\ \Rightarrow DH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)