lẹ hộ mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: ⇔n+2∈{1;−1;5;−5}⇔n+2∈{1;−1;5;−5}
hay n∈{−1;−3;3;−7}n∈{−1;−3;3;−7}
d: ⇔n+2∈{1;−1;2;−2;4;−4}⇔n+2∈{1;−1;2;−2;4;−4}
hay n∈{−1;−3;0;−4;2;−6}n∈{−1;−3;0;−4;2;−6}
a: ⇔n−1∈{1;−1;5;−5}⇔n−1∈{1;−1;5;−5}
hay n∈{2;0;6;−4}
b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Bạn tự vẽ hình nhé
CM :
a, Xét tam giác ABM và tam giác ACM , ta có :
góc AMB = góc AMC ( =90 o )
AB = AC (Vì tam giác ABC cân tại A)
AM : Cạnh chung
=> Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )
còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi
b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a )
=> góc EAM = góc FAM ( 2 góc tương ứng )
=> góc EAM = góc FAM ( 2 gó tương ứng )
Xét tam giác EAM và tam giác FAM , ta có :
gÓC EAM = góc FAM ( 90 o )
AM : cạnh chung
góc EAM = góc FAM ( cmt )
AM : cạnh chung
=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)
=> AE = AF ( 2 cạnh tương ứng )
Vậy tam giác AEF cân tại A
Bạn tự vẽ hình nhé
CM :
a, Xét tam giác ABM và tam giác ACM , ta có :
góc AMB = góc AMC ( =90 o )
AB = AC (Vì tam giác ABC cân tại A)
AM : Cạnh chung
=> Tam giac ABM = tam giác ACM ( cạnh huyền - cạnh góc vuông )
còn cách thứ 2 nữa ( theo trường hợp cạnh huyền góc nhọn ) nhưng mình chỉ làm 1 cách thôi
b, Vì tam giác ABM = tam giác ACM ( chứng minh câu a )
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> góc EAM = góc FAM ( 2 gó tương ứng )
Xét tam giác EAM và tam giác FAM , ta có :
gÓC EAM = góc FAM ( 90 o )
AM : cạnh chung
góc EAM = góc FAM ( cmt )
AM : cạnh chung
=> tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
c, Vì tam giác AEM = tam giác AFM ( chứng minh câu b)
=> AE = AF ( 2 cạnh tương ứng )
Vậy tam giác AEF cân tại A
3.125+2.075*2=3.125+(2.075*2)
=3.125+4.15
=7.275
(3.125+2.075)*2=5.2*2
=10.4
a) 3,125 + 2,075 x 2
= 3,125 + 4,15
= 7,275
b) (3,125 + 2,075) x 2
= 5,2 x 2
= 10,4
Đk: \(2\le x\le4\)
Áp dụng BĐT bunhiacopxki có:
\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)
\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)
Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)
Dấu "=" xảy ra khi x=4 (tm)