cho ΔABC cân tại A(Â<\(90^0\) ).hai đường cao AM và BN cắt nhau ở H. Trên nửa mặt phẳng bờ BC không chứa A. kẻ tia Cx vuông góc với AC cắt AM tại K
a) tứ giác BHCK là hình gì
b) Hạ BF ⊥ CK tại F. Cm M,N,F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tam giác ABC cân tại A (gt)
góc ABC=gócACB
=>\(\frac{ABC}{2}\)=\(\frac{ACB}{2}\)
=>\(\widehat{B_1}\)=\(\widehat{B_2}\)=\(\widehat{C_1}\)=\(\widehat{C_2}\)
(vì CN là phân giác \(\widehat{ACB}\):BM là phân giác \(\widehat{ABC}\))
xét tam giác ABM và tam giác ACN có
\(\widehat{B_1}\)=\(\widehat{C_1}\)
 chung
AB=AC(2 cạnh bên)
Do đó tam giác ABM=tam giác ACN(g.c.g)
=>AN=AM
=>tam giác AMN cân tại A
phần a thui mik nghĩ 2 phần còn lại đã
a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có
IB=IC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔIHB=ΔIKC
b: Ta có: ΔIHB=ΔIKC
nên IH=IK
mà IH<IB
nên IK<IB
Tham khảo :P http://lazi.vn/edu/exercise/cho-tam-giac-abc-can-tai-a-a-40-co-bm-cn-la-2-duong-phan-giac-chung-minh-bcmn-la-hinh-thang-can
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔBHC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔBHC cân tại H
c: Ta có: AB=AC
HB=HC
Do đó: AH là đường trung trựuc của BC
xét 2 tam giác ABD vuông tại D và tam giác ACE vuông tại E có
góc A chung
=> 2 tam giác đó đồng dạng
xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB+AC
góc A chung
> 2 tam giác =
=> góc ABD= góc ACE
mà tam giác ABC cân tại A => góc B lớn = góc C lớn
=> góc OCD= góc OBC
=> tam giác OBC cân tại O