Tìm tất cả các số nguyên tố p sao cho p+1 và p+14 đều là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
bạn "tôi học giỏi toán" sai rồi 0 và 1 đâu phải là số nguyên tố
Giả sử p là số nguyên tố lớn hơn 3. Khi đó p2 chia 3 dư 1
=>p2=3k+1(k \(\in\) N)
=>p2+14=3k+1+14=3k+15=3.(k+5) chia hết cho 3, ko phải số nguyên tố, loại
Vậy p=2 hoặc p=3
Với p=2 thì p2+14=22+14=18, ko là số nguyên tố
Với p=3 thì p2+14=32+14=23, là số nguyên tố, chọn
Vậy p=3
+) Với p=2 => p+14=2+14=16
Mà 16 là hợp số nên p=2 (loại) (1)
Với p>2 => p là số nguyên tố lẻ
Mà p+1 = số nguyên tố lẻ + 1 = số chẵn lớn hơn 2
=> p+1 là hợp số
=> p là số nguyên tố lẻ (loại) (2)
Từ (1), (2)
=> Không có giá trị của p thỏa mãn đề bài
Vậy không có giá trị của p thỏa mãn đề bài.