x^2 - 2x + 8 - 4 căn(4-x)(x+2)=0
Mọi ng giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x+3=4x-4
=>-x=-7
hay x=7(nhận)
b: (x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
c: 2(x-1)+x=0
=>2x-2+x=0
=>3x-2=0
hay x=2/3
a, ĐKXĐ : x ≠ 1 ; x ≠ -1
\(\Rightarrow3\left(x+1\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x+3=4x-4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\left(N\right)\)
b,
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
c,
\(\Leftrightarrow2x-2+x=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
\(\dfrac{x}{x+2}=\dfrac{x+2-2}{x+2}=1-\dfrac{2}{x+2}\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\\ \Leftrightarrow3\left(x+2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)
\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)
\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)
\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)
\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)
P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm
\(x^2+2y^2-2xy+4y+3< 0\)
\(\Rightarrow x^2-2xy+y^2+y^2+4y+4-1< 0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-1< 0\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)
Mà: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1\ge-1\forall x,y\)
Mặt khác: \(\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)
\(\Rightarrow x=y=-2\)
Vậy: ....
\(a,\Leftrightarrow x=7-4=3\\ b,\Leftrightarrow2x=-18+5=-13\\ \Leftrightarrow x=-\dfrac{13}{2}\\ c,\Leftrightarrow x-21=10\\ \Leftrightarrow x=31\\ d,\Leftrightarrow-12-x+19=0\\ \Leftrightarrow7-x=0\\ \Leftrightarrow x=7\)
a, <=> x=7-4
<=> x=3
b, 2x= -18 +5
<=>2x=-13
<=> x= -13/2
c, <=> x -21=-10
<=> x= -10 +21
<=> x=11
d, <=> -12+19 -x=0
<=> 7-x=0
<=> x=7