K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

\(x+7⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;5;10\right\}\)

hay \(x\in\left\{4;2;5;1;8;13\right\}\)

7 tháng 5 2019

a)\(10\left(x-7\right)-8\left(x+5\right)=6\cdot\left(-5\right)+24\)

\(10x-10\cdot7-8x-8\cdot5=\left(-30\right)+24\)

\(10x-70-8x-40=-6\)

\(10x-8x=\left(-6\right)+70+40\)

\(2x=104\)

\(x=104\div2\)

\(x=52\)

b)\(2\left(4x-8\right)-7\left(3+x\right)=6\)

\(2\cdot4x-2\cdot8-7\cdot3-7x=6\)

\(8x-16-21-7x=6\)

\(8x-7x=6+16+21\)

\(x=43\)

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

b: =>3|x-5|=8+4=12

=>|x-5|=4

=>x-5=4 hoặc x-5=-4

=>x=9 hoặc x=1

d: =>2x+6=3-3x-2

=>2x+6=1-3x

=>5x=-5

hay x=-1

e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)

\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)

mà x>8

nên \(x\in\left\{10;17\right\}\)

17 tháng 3 2018

Mình sửa lại chút nhé. tìm x,  y là các số hữu tỉ

\(\Leftrightarrow-x^3-x⋮x^2-2\)

\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)

\(\Leftrightarrow-3x^2⋮x^2-2\)

\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{1;-1;2;-2\right\}\)

1 tháng 10 2016

\(a.\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)

\(b.x\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)

\(c.\left(x-2\right)\left(5-x\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

\(d.\left(x-1\right)\left(x^2+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)

6 tháng 11 2016

a) ( x - 4 ) . ( x + 7 ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 4 = 0 => x = 0 + 4 = 4

+) nếu x + 7 = 0 => x = 0 - 7 = -7

vậy x = { 4 ; -7 }

b) x . ( x + 3 ) = 0

x + 3 = 0 : x

x + 3 = 0

x = 0 - 3

x = -3

vậy x = -3

c) ( x - 2 ) . ( 5 - x ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 2 = 0 => x = 0 + 2 = 2

+) nếu 5 - x = 0 => x = 5 - 0 = 5

vậy x = { 2 ; 5 }

d) ( x - 1 ) . ( x2 + 1 ) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

+) x - 1 = 0 => x = 0 + 1 = 1

+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1

vậy x = { 1 ; -1 }

22 tháng 7 2016

\(f\)\(32^{-x}.16^x=1024\)

\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)

\(\Leftrightarrow2^{4x-5x}=2^{10}\)

\(\Leftrightarrow2^{-x}=2^{10}\)

\(\Leftrightarrow-x=10\)

\(\Leftrightarrow x=-10\)

\(g\)\(3^{x-1}.5+3^{x-1}=162\)

\(3^{x-1}.\left(5+1\right)=162\)

\(3^{x-1}.6=162\)

\(3^{x-1}=162:6\)

\(3^{x-1}=27\)

\(\Leftrightarrow3^{x-1}=3^3\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

\(h\)\(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)

\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)

\(i\)\(5^x+5^{x+2}=650\)

\(5^x.\left(1+5^2\right)=650\)

\(5^x.26=650\)

\(5^x=650:26\)

\(5^x=25\)

\(\Leftrightarrow5^x=5^2\)

\(\Leftrightarrow x=2\)