K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Có làm mới có ăn

23 tháng 12 2020

đúng

 

3 tháng 7 2021

undefined

undefined

5 tháng 7 2019

A C B E D F F' G K L H

Trên cạnh BA của \(\Delta\)ABC lấy điểm G sao cho BG = BC. Ta có:

^CFB = 1800 - ^BCF - ^CBF = 1800 - ^BCE - ^CBE = 700 => ^CFB = ^BCF (=700)

=> \(\Delta\)CBF cân tại B => BF = BC = BG => \(\Delta\)GBF cân tại B => ^BGF = (1800 - ^GBF)/2 = 800

=> ^FGA = 1000. Gọi GF cắt AC tại L. Trên đoạn GL lấy điểm F' sao cho ^CAF' = 100

Qua F' dựng đường thẳng song song với AB, đường thẳng này cắt AC tại H

Trên nửa mặt phẳng bờ AB có chứa điểm C, dựng \(\Delta\)GAK đều

Xét \(\Delta\)ALG: ^LGA = 1000 (cmt), ^LAG = 400 => \(\Delta\)ALG cân tại G => \(\Delta\)LF'H cân tại F' (F'H // AG)

Xét \(\Delta\)CLG: ^GCL = ^ACB - ^BCG = 200, ^CLG = 1800 - ^GLA = 1400 => \(\Delta\)CLG cân tại L

Có ^GAF' = ^BAC - ^CAF' = 300 = ^GAK/2 => ^GAF' = ^KAF'. Từ đây dễ có \(\Delta\)F'GA = \(\Delta\)F'KA (c.g.c)
=> F'G = F'K => \(\Delta\)GF'K cân tại F'. Do ^F'GK = ^F'GA - ^KGA = 400 nên ^GF'K = 1000

Suy ra ^GF'K = ^HF'L (= ^AGL = 1000) => ^GF'H = ^KF'L (= 1000 - ^KF'H)

Kết hợp với F'H = F'L; F'G = F'K (cmt) suy ra \(\Delta\)HF'G = \(\Delta\)LF'K (c.g.c) => ^F'LK = ^F'HG

Dễ dàng tính được ^F'LK = ^GLK = (1800 - 400)/2 = 700 => ^F'HG = 700 => ^HGA = 700 (Vì F'H // AG)

Ta thấy \(\Delta\)AGH có ^GAH = 400 , ^HGA = 700 => \(\Delta\)AGH cân tại A

Từ đó AH = AG = GL = CL (Vì các tam giác AGL, CLG cân). Dễ dàng chứng minh:

\(\Delta\)CLF' = \(\Delta\)AHF' (c.g.c) (F'L = F'H, ^F'LC = ^F'HA, CL = AH) => ^LCF' = ^HAF' = ^CAF' = 100

=> ^BCF' = 700 = ^BCE => CF' trùng CE. Ban đầu ta nhận thấy CE cắt GL tại F

Mà CF' trùng CE, F' thuộc GL nên F' trùng F. Tức là ^CAF = ^CAF' = 100 => ^CAF + ACB = 900

Vậy thì AF vuông góc với BC (đpcm).

Bổ sug đề: Cho (O), BD,CE là các dây của (O)

Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB

1/2(góc EDB+góc ECB)

=1/2(1/2sđ cung EB+1/2sđ cung EB)

=1/2sđ cung EB

=1/2*góc BOE

=>góc EDB+góc ECB=góc BOE

9 tháng 10 2023

nhanh lên mình cần gấp lắm

giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu

9 tháng 10 2023

Chịu lớp6

Chịu

 

1 tháng 8 2018

A B C D E I

Ta có bài toán phụ sau: Nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a}{a+b}=\frac{c}{c+d}\)

 Chứng minh:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Leftrightarrow ac+ad=ac+bc\Leftrightarrow a\left(c+d\right)=c\left(a+b\right)\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

Áp dụng vào bài toán:

Theo t/c đường phân giác trong tam giác, ta có: \(\frac{CD}{AD}=\frac{BC}{AB}\)

\(\Rightarrow\frac{CD}{CD+AD}=\frac{BC}{BC+AB}\Rightarrow\frac{CD}{AC}=\frac{BC}{AB+BC}\Rightarrow CD=\frac{BC.AC}{AB+BC}\)(1)

Tương tự: \(BE=\frac{BC.AB}{BC+AC}\)(2)

Trong tam giác DBC có phân giác CI nên \(\frac{BI}{DI}=\frac{BC}{CD}\Rightarrow\frac{BI}{DI+BI}=\frac{BC}{CD+BC}\)(3)

Thế (1) vào (3), được

\(\Rightarrow\frac{BI}{BD}=\frac{BC}{BC+\frac{BC.AC}{AB+BC}}=\frac{BC}{\frac{BC.\left(AB+AC+BC\right)}{AB+BC}}=\frac{AB+BC}{AB+AC+BC}\)(*)

Lại có: \(\frac{CI}{EI}=\frac{BC}{BE}\Rightarrow\frac{CI}{CE}=\frac{BC}{BC+BE}\)(4)

Thế (2) vào (4) \(\Rightarrow\frac{CI}{CE}=\frac{BC}{BC+\frac{BC.AB}{BC+AC}}=\frac{BC}{\frac{BC\left(AB+AC+BC\right)}{BC+AC}}=\frac{BC+AC}{AB+AC+BC}\)(2*)

Nhân (*) với (2*) \(\Rightarrow\frac{BI.CI}{BD.CE}=\frac{\left(AB+BC\right)\left(BC+AC\right)}{\left(AB+AC+BC\right)^2}\).

Mà \(BD.CE=2.BI.CI\Rightarrow\frac{\left(AB+BC\right)\left(AC+BC\right)}{\left(AB+AC+BC\right)^2}=\frac{1}{2}\)

\(\Rightarrow2.\left(BC^2+AB.BC+AC.AB+AC.BC\right)=AB^2+AC^2+BC^2+2.\left(AB.BC+AC.AB+AC.BC\right)\)\(\Leftrightarrow2BC^2=AB^2+AC^2+BC^2\Leftrightarrow BC^2=AB^2+AC^2\)

Suy ra tam giác ABC vuông tại A (ĐL Pytago đảo). Hay ^BAC = 900 (đpcm).

1 tháng 8 2018

hai doan day xanh va day vang dai tat ca 119mneu cat di 3/5 doan day xanh va 3/7 day vang thi phan con lai cua hai doan day bang nhau tinh chieu dai cua moi doan day ai lam dc giup di

10 tháng 1 2018

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.