bai 4:cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC,tren tia Bm lay diem N sao cho M la trung diem cua doan BN.CMR:
a)CN vuong goc voi AC va CN=AB
b)AN=BC va AN song song voi BC
bai 4:cho tam giac ABC ke AH vuong goc voi BC(H thuoc BC)goi M la trung diem cua canh BC.Biet goc BAH=goc HAM=goc MAC.Tinh cac goc cua tam giac ABC
bai 6:cho tam giac ABC vuong tai A,phan giac BD.Tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc voi BC
b)BIET goc ADH=120 do.Tinh goc ABD
Bài 4:
Bài 6:
b) Theo câu a) ta có \(\Delta ABD=\Delta HBD.\)
=> \(\widehat{ADB}=\widehat{HDB}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{HDB}=\widehat{ADH}\left(gt\right)\)
=> \(\widehat{ADB}+\widehat{HDB}=120^0\)
Mà \(\widehat{ADB}=\widehat{HDB}\left(cmt\right)\)
=> \(2.\widehat{ADB}=120^0\)
=> \(\widehat{ADB}=120^0:2\)
=> \(\widehat{ADB}=60^0.\)
=> \(\widehat{ADB}=\widehat{HBD}=60^0\)
Xét \(\Delta ABD\) có:
(định lí tổng ba góc trong một tam giác).
=> \(90^0+\widehat{ABD}+60^0=180^0\)
=> \(150^0+\widehat{ABD}=180^0\)
=> \(\widehat{ABD}=180^0-150^0\)
=> \(\widehat{ABD}=30^0\)
Vậy \(\widehat{ABD}=30^0.\)
Chúc bạn học tốt!