Cho tam giác ABC có AB=AC, M là một điểm nằm trong tam giác sao cho MB=MC,N là trung điểm của BC
a) Chứng minh tam giác AMB= tam giác AMC
b) Chứng minh tam giác ABN bằng tam giac ACN
c) Chứng minh 3 điểm A, M, N thẳng hàng
d) MN là trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AB=AC
BM=CM
AM chung
=>ΔAMB=ΔAMC
b: Xét ΔMAB vuông tại M va ΔMDC vuông tại M có
MB=MC
góc MBA=góc MCD
=>ΔMAB=ΔMDC
=>MA=MD
Bn tự vẽ hình
a) Xét Δ AMB và Δ AMC
AB=AC
BM=MC
AM chung
⇒ Δ AMB = Δ AMC
b) Xét Δ AMB và Δ DMC
DM=AM
BM=CM
AMB=CMD (đối đỉnh)
⇒ Δ AMB = Δ DMC
⇒ ABM=DCM (2 góc t.ứng)
Mà 2 góc này ở vị trí SLT
⇒ AB//CD
c) Bn tự lm, tương tự phần b)
a) Xét tam giác AMB và tam giác AMC có:
+ AB = AC (gt).
+ MB = MC (M là trung điểm của BC).
+ AM chung.
=> Tam giác AMB = Tam giác AMC (c - c - c).
b) Xét tứ giác ABCD có:
+ M là trung điểm của BC (gt).
+ M là trung điểm của AD (MD = MA).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Tứ giác ABCD là hình bình hành (cmt).
=> AC // BD (Tính chất hình bình hành).
a
vì AM là tia phân giác của góc A=>góc BAM=CAM
xét tam giác AMB và tam giác AMC có:
góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC
b
vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC
vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC
c
xét tam giác ABM và KCM có
MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK
vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
a, Xét tam giác AMB và tam giác AMC ta có :
MA _ chung
BA = AC ( gt )
MB = MC ( gt )
Vậy tam giác AMB = tam giác AMC ( c.c.c )
b, Xét tam giác NMB và tam giác NMC ta có :
MN _ chung
NB = NC ( N là trung điểm BC )
BM = MC ( gt )
Vậy tam giác NMB = tam giác NMC ( c.c.c )
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có
AM chung
MB = MC ( giả thiết )
AB = AC ( giả thiết )
Nên \(\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) Xét \(\Delta NMB\) và \(\Delta NMC\) có
NM chung
NB = NC ( vì N là trung điểm của BC )
MB = MC ( giả thiết )
Nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)
a Xét ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có
HA=HM
HB=HC
=>ΔAHB=ΔMHC
=>góc HAB=góc HMC
=>AB//MC và AB=MC=AC
=>ΔMCA cân tại C
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔABM=ΔCDM
b: Xét ΔAMD và ΔCMB có
MA=MC
góc AMD=góc CMB
MD=MB
=>ΔAMD=ΔCMB
c: Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
=>ΔABC=ΔCDA
Xét tam giác AMB và tam giác CMK:
+ AM = MC (M là trung điểm của AC).
+ BM = KM (gt).
+ \(\widehat{AMB}=\widehat{CMK}\) (đối đỉnh).
\(\Rightarrow\) Tam giác AMB = Tam giác CMK (c - g - c).
b) Ta có: \(\widehat{BAM}=\widehat{KCM}\) (Tam giác AMB = Tam giác CMK).
\(\Rightarrow\) AB // CK (dhnb).