có bao nhiêu giá trị nguyên của tham số m để phương trình \(\left(\frac{x^2}{x-1}\right)^2+\frac{2x^2}{x-1}+m=0\)có bốn nghiệm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x-2\right)\left(x^2-7x+41\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Thay x=2 vào (2), ta được:
\(2^2-2m+m^2-5m+8=0\)
\(\Leftrightarrow m^2-7m+12=0\)
\(\Leftrightarrow\left(m-3\right)\left(m-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên của m thỏa mãn hai phương trình có nghiệm chung
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) không phải nghiệm
- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:
\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)
Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)
Pt trở thành: \(t^2+2t+3-2m=0\)
\(\Leftrightarrow t^2+2t+3=2m\) (1)
Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)
Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)
Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)
\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)
Đề hình như hơi sai sai ở chỗ \(-7.3^m\) cuối cùng
Đúng như vầy thì chắc ko làm được đâu, \(-7.3m\) mới có cơ hội biến đổi
Thay x = 4 vào phương trình, ta được :
\(1-m=2\left(2m+1\right)\left(m-1\right)\)
\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)
\(ĐKXĐ:x\ne1\)
Đề không nói 4 nghiệm có pb hay không coi 4 nghiệm này phân biệt
Đặt \(\frac{x^2}{x-1}=t\Rightarrow x^2-tx+t=0\)
\(\Delta=t^2-4t>0\Rightarrow\orbr{\begin{cases}t>4\\t< 0\end{cases}}\)
Phương trình trở thành :
\(t^2+2t+m=0\Leftrightarrow f\left(t\right)=t^2+2t=-m\left(1\right)\)
PT đã xho có 4 nghiệm \(\Leftrightarrow y=-m\) cắt \(y=f\left(t\right)=t^2+2t\)
tại 2 điểm pb thỏa mãn \(\orbr{\begin{cases}t>4\\t< 0\end{cases}\left(2\right)}\)
\(f\left(0\right)=0;f\left(-1\right)=-1\)
Dựa vào đồ thị \(y=f\left(t\right)\) ta thấy \(y=-m\) cắt \(y=f\left(t\right)\) tại 2 điểm pb thỏa mãn điwwù kiện ( 2 ) thì \(-1< -m< 0\)
\(\Rightarrow0< m< 1\)