Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a+b+c \(\ne\) 0. Tính giá trị của biểu thức: P= \(\frac{a^{2000}.b^{19}}{c^{2019}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Leftrightarrow a=b=c\)
\(P=\frac{a^{2000}\cdot b^{19}}{c^{2019}}\\ \Leftrightarrow P=\frac{a^{2000}\cdot a^{19}}{a^{2019}}\\ =\frac{a^{2000+19}}{a^{2019}}\\=\frac{a^{2019}}{a^{2019}} =1\)
\(\Leftrightarrow P=1\)
Ta có \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=> b + c = 2a ; c + a = 2b ; a + b = 2c
Khi đó P = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
- TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
- TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{cb}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{abc}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
đpcm
\(M=\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ca+c+1}\)
\(M=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)
\(M=\frac{ca}{1+ca+c}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)
\(M=\frac{ca+a+1}{1+ca+c}\)
\(M=1\)