Tìm giá trị nhỏ nhất của A biết:
A=\(\frac{x-2019+2020}{x-2019+2021}\)
giá trị tuyệt đối ở x-2019 cả mẫu và tử
Giai giùm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bđt cosi
\(P=\left|x-2019\right|+\dfrac{2020}{\left|x-2019\right|}+2021\ge2\sqrt{\dfrac{\left|x-2019\right|.2020}{\left|x-2019\right|}}+2021=4\sqrt{505}+2021\)
Dấu ''='' xảy ra khi \(x-2019=2020\Leftrightarrow x=4039\)
anh ơi, anh tick em câu này được ko ạ, tick được thì em cảm ơn ạ
https://hoc24.vn/cau-hoi/quang-duong-tu-tinh-a-den-tinh-b-dai-950-km-vay-tren-ban-do-co-ti-le-1-1-000-000-thi-quang-duong-do-dai-la-cm.6180857381096
Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất
=> |x - 2019| + 2021 nhỏ nhất
Ta có: \(\left|x-2019\right|\ge0\)
\(\Rightarrow\left|x-2019\right|+2021\ge2021\)
Dấu "=" xảy ra khi x - 2019 = 0
=> x = 2019
\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)
Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
Áp dụng BĐT trị tuyệt đối:
\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)
\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)
\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)
\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)
\(=1-\frac{1}{\left|x-2019\right|+2021}\)
\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)
Dấu "=" xảy ra tại \(x=2019\)
Bài giải
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN
Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019
\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)
\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)
\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)