Số học sinh của một trường là một số có ba chữ số lớn nhất, biết rằng khi xếp hàng 20, hàng 30, hàng 25 thì đều dư 15. Tìm số học sinh của trường.!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh của trường đó là x(bạn)(Điều kiện: x là số nguyên dương)
Vì số học sinh khi xếp hàng 20;25;30 đều dư 15 học sinh nên \(x-15\in BC\left(20;25;30\right)\)
\(\Leftrightarrow x-15\in\left\{300;600;900;1200;1500\right\}\)
\(\Leftrightarrow x\in\left\{315;615;915\right\}\)
mà \(x⋮41\)
nên x=615
Gọi số học sinh của trường đó là a
Do số Học sinh khi xếp hàng 20; 25; 30 đều dư 15 học sinh nên ( a - 15 )⋮ 20; ( a - 15 ) ⋮ 25; ( a - 15 ) ⋮ 30
Khi đó ( a - 15 ) là BC của 20, 25, 30
BC ( 20, 25, 30 ) = { 0; 300; 600; 900; … }
⇒ a - 15 ∈ { 0; 300; 600; 900; … }
⇒ a ∈ { 15; 315; 615; 915; … }
Do a chia hết cho 41 và a ∈ ( 600; 1000 ) nên a = 615
Gọi số học sinh của trường đó là a
Do số Học sinh khi xếp hàng 20; 25; 30 đều dư 15 học sinh nên ( a - 15 )⋮ 20; ( a - 15 ) ⋮ 25; ( a - 15 ) ⋮ 30
Khi đó ( a - 15 ) là BC của 20, 25, 30
BC ( 20, 25, 30 ) = { 0; 300; 600; 900; … }
⇒ a - 15 ∈ { 0; 300; 600; 900; … }
⇒ a ∈ { 15; 315; 615; 915; … }
Do a chia hết cho 41 và a ∈ ( 600; 1000 ) nên a = 615
Gọi số HS là a(HS)(a∈N*,\(a\le1000\))
Theo đề bài ta có:
\(\left(a-15\right)\in BC\left(20;25;30\right)=\left\{300;600;900;1200;...\right\}\)
\(\Rightarrow a\in\left\{315;615;915;1215;...\right\}\)
Mà \(a⋮41\Rightarrow a=615\)(nhận)
Vậy...
Gọi số h/s của trường là a ( 0< a < 1200) a thuộc N
ta có a- 15 chia hết cho 20;25;30
=. a = 15 thuộc BCNN( 20;25;30) = 22.3.52 = 300
=> BC( 20;25;30) = BC(300) = {0;300;600;900;1200;...}
= a thuộc { 15;;315;615;915;1215;...}
mà a<1000; a chia hết cho 41 nên a = 615
Gọi số h/s của trường là a ( 0< a < 1200) a thuộc N ta có a- 15 chia hết cho 20;25;30 =.
a = 15 thuộc BCNN( 20;25;30) = 22 .3.52 = 300 => BC( 20;25;30) = BC(300) = {0;300;600;900;1200;...} = a thuộc { 15;;315;615;915;1215;...} mà a<1000;
a chia hết cho 41 nên a = 615
gọi số học sinh của trường đó là a học sinh ( a\(\in\)N; a < 1000)
vì khi xếp thành 20 hàng, 25 hàng, 30 hàng đều dư 15 học sinh
=> a - 15 chia hết cho 20; 25 ; 30 và a < 1000
=> a \(\in\) BC (20,25,30)
Ta có : 20 = 22 . 5
25 = 52
30 = 2 . 3 . 5
=> BCNN (20,25, 30) = 22 . 52 . 3 = 300
Vì BC(20,25,30) = B(300)
Mà B(300) = {0; 300; 600; 900; ...)
=> a- 15 \(\in\) {0; 300; 600; 900; ... }
=> a \(\in\) {15; 315; 615; 915; ...}
Và a chia hết cho 41 và a < 1000
=> a = 615
vậy trường đó có 615 học sinh
Gọi số học sinh của trường đó là a
Theo đề bài ta có :
a : 20 dư 15
a : 30 dư 15
a : 25 dư 15
=> a - 15 chia hết cho 20 ; 30 ; 25
=> a - 15 thuộc BC ( 20 ; 30 ; 25 )
Ta có :
20 = 22 . 5
30 = 2 . 3 . 5
25 = 52
=> BCNN ( 20 ; 30 ; 25 ) = 22 . 3 . 52 = 300
=> BC ( 20 ; 30 ; 25 ) = B ( 300 ) = { 0 ; 300 ; 600 ; 900 ; 1200 ; ... }
Theo đề bài : a - 15 là số lớn nhất có 3 chữ số
=> a - 15 = 900
=> a = 900 - 15
=> a = 885
Vậy trường đó có 885 học sinh
Gọi số học sinh của trường là a ( a thuộc N ; a lớn nhất )
Theo bài ra , ta có :
a Chia 20 dư 15 ; a : 30 dư 15 ; a : 25 dư 15
=> a - 15 Chia hết cho 20 ; 15 ; 30
=> a - 15 thuộc BC( 20 ; 25 ; 30 )
20 = 22 , 5 ; 25 = 52 ; 30 = 2 . 3 . 5
=> BCNN( 20 ; 25 ; 30 ) = 22 . 3 . 52 = 300
=> BC(20 ; 25 ; 30 ) = B(300 ) = { 0 ; 300 ; 600 ; 900 ; 1200 ; ... }
Vì a là số tự nhiên có 3 chữ số mà lớn nhất nên a = 900
Vậy số học sinh của trường đó là 900 em