Chứng minh : A = 5 + 52 + 53 + . . . + 59 + 510 chia hết cho 6
GIÚP MIK VỚI Ạ, CẦN VERY GẤP, AI XONG TIK TRƯỚC NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
xét n là số lẻ
=>(n+3) là số chẵn =>(n+3) (n+12) chia hết cho 2
xét n là số chẵn
=.(n+12) là số chẵn =>(n+3) (n+12) chia hết cho 2
\(\frac{a}{b}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\frac{a}{b}=\left(\frac{1}{51}+\frac{1}{100}\right)+\left(\frac{1}{52}+\frac{1}{99}\right)+...+\left(\frac{1}{75}+\frac{1}{76}\right)\)
\(\frac{a}{b}=\frac{151}{51.100}+\frac{151}{50.99}+...+\frac{151}{75.76}\)
Chọn mẫu chung = 51.52.53...100
Gọi các thừa số phụ lần lượt là: k1; k2; ...; k25
=> \(\frac{a}{b}=\frac{151.\left(k_1+k_2+...+k_{25}\right)}{51.52...100}\)
Do 151 là số nguyên tố mà tích 51.52...100 không chứa thừa số 151 => 51.52....100 không chia hết cho 151
=> đến khi phân số a/b tối giản thì a vẫn chia hết cho 151 (đpcm)
Mik rút gọn cho bn nha
\(\frac{a}{b}=\frac{1}{51.100}+\frac{1}{52.99}+..........+\frac{1}{100.51}\)
\(151.\frac{a}{b}=\frac{1}{51}+\frac{1}{100}+\frac{1}{52}+\frac{1}{99}+......+\frac{1}{100}+\frac{1}{51}\)
\(\Rightarrow\left(151.\frac{a}{b}\right):2=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.........+\frac{1}{100}\)
\(\Rightarrow\frac{a}{b}=\frac{2}{151}.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.........+\frac{1}{100}\right)\)
Chúc bn hok tốt
b ) B = 5 + 52 + ... + 57 . 58
= ( 5 + 52 ) + ... + ( 57 . 58 )
= 5 . ( 1 + 5 ) + ... + 57 . ( 1 + 5 )
= 5 . 6 + ... + 57 . 6
= 6 . ( 5 + ... + 57 ) \(⋮\)6
a ) 53! - 51!
= 51! . ( 52 . 53 - 1 )
= 51! . 2755
mà 2755 \(⋮\)29 => 51! . 2755
Vậy 53! - 51! \(⋮\)29
a) Ta có:
\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)
\(=...5⋮5\)
\(\Rightarrow9^{1945}-2^{1930}⋮5\)
Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)
b) Ta có:
\(4^{2010}+2^{2014}=...6+...4\)
\(=...10⋮10\)
\(\Rightarrow4^{2010}+2^{2014}⋮10\)
Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)