Bài 3. Tìm tổng các số nguyên x thoả mãn: -10 < x < 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Có ( -10 ) \(⋮\)( n - 3 ) \(\Rightarrow\)( n - 3 ) \(\in\)Ư ( -10 ) Ư ( -10 ) = { 1; -1 ; 2; -2; 5;-5;10;-10}
Nếu n - 3 = 1 thì : n = 4
Nếu n - 3 = -1 thì : n = 2
Nếu n - 3 = 2 thì : n = 5
Nếu n - 3 = - 2 thì : n = 1
Nếu n - 3 = 5 thì : n = 8
Nếu n - 3 = -5 thì : n = -2
Nếu n - 3 = 10 thì : n = 13
Nếu n - 3 = -10 thì : n = -7
Vậy n \(\in\){ 4;2;5;1;8;-2;13;-7 }
x⊂{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8;9;10;11}
Tổng của các số nguyên x là bằng (-9)+(-8)+(-7)+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7+8+9+10+11=21
\(\frac{10+x}{17+x}=\frac{3}{4}\)=>3.(17+x)=4.(10+x)
= 51+3x=40+4x
=>51-40=4x-3x
=>11=x
vậy x=11
1) \(-4< x< 3\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2\right\}\)
Tổng:
\(\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2\)
\(=\left(-2+2\right)+\left(-1+1\right)+0-3\)
\(=-3\)
2) \(-5< x< 5\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng:
\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+3\)
\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0\)
\(=0\)
3) \(-10< x< 6\)
\(\Rightarrow x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
Tổng:
\(\left(-9\right)+\left(-8\right)+\left(-7\right)++\left(-6\right)+\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4+5\)
\(=-24\)
4) \(-6< x< 5\)
\(\Rightarrow x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng:
\(\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4\)
\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0-5\)
\(=-5\)
5) \(-5< x< 2\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1\right\}\)
Tổng:
\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1\)
\(=\left(-1+1\right)+0+\left(-4-3-2\right)\)
\(=-6\)
tat ca so nguyen x thoa man la
x thuoc {-3;-2;-1;0;1;2;3;...;7;8;9}
tong cac so nguyen x la
{-3+3}+{-2+2}+{-1+1}+0+4+5+6+7+8+9
=4+5+6+7+8+9
=39
*Bạn ơi, bài 3 mình ko hiểu đề cho lắm ấy?? Bạn xem lại đề thử nhé!! Nhớ tk giúp mình nha 😊*
Bài 1:
Tổng các số nguyên x thỏa mãn bài toán là:
-99+(-98)+(-97)+(-96)+...+95+96
= -99+(-98)+(-97)+(-96+96)+(-95+95)+...+(-1+1)+0
= -99+(-98)+(-97)+0+0+...+0
= -294
Bài 4:
n-1 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
=> n thuộc {2;0;4;-2;6;-4;16;-14}
Mà n thuộc N
Do đó: n thuộc {2;0;4;6;16}
Vậy...
Bài 5:
5+n chia hết cho n+1
=> (n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Hay n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {0;-2;1;-3;3;-5}
Vậy...
Bài 1: Các số nguyên x thỏa mãn là: -99; -98 ; -97;....; 96
Tổng các số nguyên x là: (-99)+ (-98) + (97) +...+96
= ( -96+96) + (-95+95) +...+ (-99) + (-98) +(-97)
= -294
Vậy...
Bài 5
Ta có (5+n)=(n+1)+4
Vì (n+1)\(⋮\)(n+1)
Để [(n+1)+4]\(⋮\)(n+1)<=>4\(⋮\)(n+1)<=>(n+1)\(\in\)Ư(4)={±1;±2;±4}
Ta có bảng sau
n+1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -5 | -3 | -2 | 0 | 1 | 3 |
Vậy...
\(\Rightarrow x\in\left\{-9;-8;...;16\right\}\)
Tổng là: \(\dfrac{\left(16-9\right)\left(\dfrac{16+9}{1}+1\right)}{2}=91\)