Phân tích đa thức thành nhân tử
a2+b2-2a+2b-2ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3a-3b+a^2-2ab+b^2\)
\(=3\left(a-b\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a-b+3\right)\)
a)
3.(a-b) +2.(a-b ) =5 .(a-b )
câu b làm tương tự nha nhóm a^2 -2ab +b^2 vào 1nhoms và làm như câu a
a: \(a^2+6ab+9b^2-1\)
\(=\left(a+3b\right)^2-1^2\)
\(=\left(a+3b+1\right)\left(a+3b-1\right)\)
b: \(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=\left(x+3y\right)\left(-15x+5\right)\)
\(=-5\left(3x-1\right)\left(x+3y\right)\)
d: \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)
\(=\left(x+y\right)^2\cdot\left(x-y\right)-x\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x+y\right)^2-x\right]\)
e: \(a^2-6a+9-b^2\)
\(=\left(a-3\right)^2-b^2\)
\(=\left(a-3-b\right)\left(a-3+b\right)\)
f: \(x^3-y^3-3x^2+3x-1\)
\(=\left(x^3-3x^2+3x-1\right)-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
ax - bx - a² + 2ab - b²
= (ax - bx) - (a² - 2ab + b²)
= x(a - b) - (a - b)²
= (a - b)(x - a + b)
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2+2\left(a+b\right)+1=\left(a+b+1\right)^2\)
a^2 + b^2 - 2a + 2b - 2ab
= (a^2 - 2ab + b^2) - 2(a - b)
= (a - b)^2 - 2(a - b)
= (a - b)(a - b - 2)
a^2+b^2-2a+2b-2ab
=(a^2+b^2-2ab)-(2a-2b)
=(a-b)^2-2(a-b)
=(a-b)(a-b-2)