có bao nhiêu số tự nhiên có 5 chữ số khác nhau và chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau chia hết cho5 :
Xét với chữ số tận cùng là 0 : + Có 9 cách chọn chữ số hàng trăm
+ Có 8 cách chọn chữ số hàng chục
+ Có 1 cách chọn chữ số hàng đơn vị : 0
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 t/c là 0 : 9.8.1=72 ( số )
Xét với chữ số tận cùng là 5 : + Có 8 cách chọn chữ số hàng trăm
+ Có 8 cách chọn chữ số hàng chục
+ Có 1 cách chọn chữ số hàng đơn vị
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 t/c là 5 là : 8.8.1 = 64 ( số )
=> Có số số tự nhiên có 3 chữ số khác nhau chia hết cho 5 : 72 + 64 = 136 ( số )
Tương tự .
Chọn B
Số cần tìm có dạng a b c d ¯
TH1. d = 0 có A 8 3 cách chọn a b c ¯
TH2. d = 5 , có 8 cách chọn a, có A 8 2 cách chọn b c ¯ .
Vậy có tất cả A 8 3 + 8. A 8 2 = 784 số
Số tự nhiên có 5 chữ số có dạng: \(\overline{abcde}\)
TH1: \(e=0\)
a có 8 cách chọn.
b có 7 cách chọn.
c có 6 cách chọn.
d có 5 cách chọn.
\(\Rightarrow\) Có \(8.7.6.5=1680\) số tự nhiên thỏa mãn yêu cầu.
TH2: \(e\ne0\)
a có 8 cách chọn.
b có 8 cách chọn.
c có 7 cách chọn.
d có 6 cách chọn.
\(\Rightarrow\) Có \(8.8.7.6=2688\) số tự nhiên thỏa mãn.
Vậy có \(1680+2688=4368\) số tự nhiên thỏa mãn có 5 chữ số đôi một khác nhau và chia hết cho 2.
a: 97532
b: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
c: \(\overline{abcd}\)
TH1: d=0
=>Có 5*4*3=60 số
TH2: d=5
=>Có 4*4*3=48 số
=>Có 60+48=108 số
Có 8 cách chọn chữ số hàng nghìn (bỏ 0 và 5)
Có 7 cách chọn chữ số hàng trăm
Có 6 cách chọn chữ số hàng chục
Có 2 cách chọn chữ số hàng đơn vị (0 và 5)
Có tất cả số số tự nhiên có 4 chữ số khác nhau chia hết cho 5 là:
8 x 7 x 6 x 2 = 672 (số)
Đáp số: 672 số
Có 8 cách chọn chữ số hàng nghìn (bỏ 0 và 5)
Có 7 cách chọn chữ số hàng trăm
Có 6 cách chọn chữ số hàng chục
Có 2 cách chọn chữ số hàng đơn vị (0 và 5)
Có tất cả số số tự nhiên có 4 chữ số khác nhau chia hết cho 5 là:
8 x 7 x 6 x 2 = 672 (số)
Đáp số: 672 số
a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn
a) Ta đặt mẫu chung là: abcd (a khác 0)
- Có 9 cách chọn a
- Có 9 cách chọn b
- Có 8 cách chọn c
- Có 7 cách chọn d
Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)
b) Ta đặt mẫu chung là: abcd
- Có 5 cách chọn a
- Có 4 cách chọn b
- Có 3 cách chọn c
- Có 2 cách chọn d
Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)
c) Ta lập dãy số: 1000; 1005; 1010;...; 9995
Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị
Áp dụng công thức dãy số cách đều, ta có số số hạng là:
(9995 - 1000) : 5 + 1 = 1800 (số)
d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)
Trường hợp d = 0
- Có 9 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)
Trường hợp d = 5
- Có 8 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)
Ta lập được là: 504 + 448 = 952 (số)
Đ/S
HT
abcde: 8.7.6.5.2 = 3360
Vậy có 3360 số tự nhiên có 5 chữ số và chia hết cho 5.
Chữ số cần tìm là \(\overline{abcde}\)(chữ số đầu tiên phải khác 0 nên a ≠ 0)
Chọn chữ số cho e, có 2 cách là 0 hoặc 5 (do chia hết cho 5)
+ Nếu e = 0, do các chữ số khác nhau nên a ≠ 0, thỏa mãn điều kiện
Lúc này, chọn chữ số cho a có 9 cách, chọn chữ số cho b có 8 cách, chọn chữ số cho c có 7 cách vào chọn chữ số cho d có 6 cách
Vậy khi e = 0 thì số cách chọn là 2 . 9 . 8 . 7 . 6 = 6048 (cách)
+ Nếu e ≠ 0 thì e = 5, khi đó a vừa phải khác 0 vừa phải khác 5
=> Cách chọn số ở a là 8
=> Cách chọn số ở b là 8. Lí do : khi e = 5, a chọn 1 số khác 0 và 5 thì b có thể chọn bất kì số nào trong 8 số còn lại
=> Cách chọn số ở c là 7
=> Cách chọn số ở d là 6
⇒ Số cách chọn : 8 .8 . 7 . 6 = 2688 (số)
Vậy tổng số số cần tìm là : 2688 + 6048 = 8736 số
Có :
- 9 cách chọn hàng chục nghìn
- 8 cách chọn hàng nghìn
- 7 cách chọn hàng trăm
- 6 cách chọn hàng chục
- 1 cách chọn hàng đơn vị
=> Có :
9 . 8 . 7 . 6 . 1 = 3024 ( số )
Vậy có 3024 số tự nhiên có 5 chữ số khác nhau và chia hết cho 10
Chúc bn hok tốt ~
Gọi số có 5 chữ số khác nhau và \(⋮\)10 là \(n=\overline{abcde}\)
Mà n\(⋮\)10 nên
e=10 ( 1 cách chọn )
a\(\ne\)0 => a có 9 cách chọn
Các số b,c,d sẽ đc chọn từ 8 chữ số còn lại
=> Có \(A_8^3\)
Vậy ta có : \(1.9.A_8^3\)\(=3024\)số