GTLN a/ \(\frac{x}{x^2+5x+4}\)(x>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{x}{2.\sqrt{x^4.y^2}}+\frac{y}{2.\sqrt{x^2y^4}}=\frac{x}{2.x^2y}+\frac{y}{2.x.y^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{2}{2xy}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=y^4\\x^4=y^2\end{cases}\Leftrightarrow x^2.x^4=y^2.y^4\Leftrightarrow x^6=y^6\Leftrightarrow}x=y=1\left(x,y>0\right)\)
Vậy \(A_{max}=1\Leftrightarrow x=y=1\)
Không biết bài này cô si ngược được không?
Dự đoán xảy ra cực trị tại x = y = 1
Cho x = 1 hoặc y = 1
Khi đó: \(A=\frac{1}{1+y^2}+\frac{1}{1+x^2}\)
Mà \(\frac{1}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)
Tương tự: \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)
Cộng theo vế hai BĐT: \(A\ge\left(1+1\right)-\left(\frac{x}{2}+\frac{y}{2}\right)\)\(\ge2-\left(\frac{1}{2}+\frac{1}{2}\right)=1\)
Áp dụng Bđt Cô si :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2x\left(xy=1\right)\)
\(\Leftrightarrow\frac{1}{x^4+y^2}\le\frac{1}{2x}\)\(\Leftrightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\left(1\right)\)
\(x^2+y^4\ge2\sqrt{x^2y^4}=2xy^2=2y\left(xy=1\right)\)
\(\Leftrightarrow\frac{1}{x^2+y^4}\le\frac{1}{2y}\Leftrightarrow\frac{y}{x^2+y^4}\le\frac{1}{2}\left(2\right)\)
Cộng theo vế của (1) và (2)
\(\Rightarrow A\le1\rightarrow Max_A=1\)
Dấu = khi x=y=1
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
A = \(\frac{3x}{2}+\frac{2}{x-1}=3.\frac{x-1}{2}+\frac{2}{x-1}+\frac{3}{2}\)\(\ge2\sqrt{3}+\frac{3}{2}\)
\(\Rightarrow\)min A = \(2\sqrt{3}+\frac{3}{2}\Leftrightarrow x=\frac{2}{\sqrt{3}}+1\)(thỏa mãn)
B = \(x+\frac{3}{3x-1}=\frac{1}{3}\left(3x-1+\frac{9}{3x-1}+1\right)\)\(\ge\frac{1}{3}\left(2\sqrt{9}+1\right)=\frac{7}{3}\)
\(\Rightarrow\)min B = \(\frac{7}{3}\Leftrightarrow x=\frac{4}{3}\)
\(A\) \(=\) \(3x^2\left(8-x^2\right)\le3\frac{\left(x^2+8-x^2\right)^2}{4}=48\)
\(\Rightarrow\) maxA = 48 \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)(thỏa mãn)
\(B=\) \(4x\left(8-5x\right)\)\(=\frac{4}{5}.5x\left(8-5x\right)\le\frac{4}{5}.\frac{\left(5x+8-5x\right)^2}{4}=\frac{64}{5}\)
\(\Rightarrow\)max B = \(\frac{64}{5}\Leftrightarrow x=\frac{4}{5}\)(thỏa mãn)
\(A=\frac{x^2y^2}{x^2.xy+y^4}+\frac{x^2y^2}{x^4+xy.y^2}=\frac{\left(\frac{x}{y}\right)^2}{\left(\frac{x}{y}\right)^3+1}+\frac{\left(\frac{x}{y}\right)^2}{\frac{x}{y}.\left[\left(\frac{x}{y}\right)^3+1\right]}\)
\(=\frac{t^2}{t^3+1}+\frac{t^2}{t\left(t^3+1\right)}\text{ }\left(t=\frac{x}{y}>0\right)\)
\(=\left(\frac{t^2+t}{t^3+1}-1\right)+1=-\frac{\left(t-1\right)^2\left(t+1\right)}{t^3+1}+1\le1\forall t>0\)
Đẳng thức xảy ra khi \(t=1\Leftrightarrow x=y=1.\)
Vậy GTLN của A là 1.
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
Đặt \(\left(x+1;y+1;z+4\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\a+b+c=6\end{matrix}\right.\)
\(A=\frac{\left(a-1\right)\left(b-1\right)-1}{ab}+\frac{c-4}{c}=\frac{ab-a-b}{ab}+\frac{c-4}{c}\)
\(A=2-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le2-\frac{\left(1+1+2\right)^2}{a+b+c}=2-\frac{16}{6}=-\frac{2}{3}\)
\(A_{max}=-\frac{2}{3}\) khi \(\left(a;b;c\right)=\left(\frac{3}{2};\frac{3}{2};3\right)\) hay \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)
\(A=\frac{1}{x+\frac{4}{x}+5}\le\frac{1}{2\sqrt{\frac{4x}{x}}+5}=\frac{1}{9}\)
\(A_{max}=\frac{1}{9}\) khi \(x=\frac{4}{x}\Leftrightarrow x=2\)
BĐT Cô-si \(a+b\ge2\sqrt{ab}\)