Cho tam giác ABC ( gócA=90 độ) , lấy một điểm H bất kì trên cạnh AC , kẻ HM vuông góc BC (M thuộc BC)
a) Chứng minh 4 điểm A,B,M,H cùng thuộc một đường tròn
b) Chứng minh BH>AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: AB^2=BH*BC
=>BC=8^2/5=12,8(cm)
\(AC=\sqrt{BC^2-AB^2}=\dfrac{8\sqrt{39}}{5}\left(cm\right)\)
2:
a: Xét tứ giác AMHN có
góc AMH+góc ANH=90+90=180 độ
=>AMHN nội tiếp đường tròn đường kính AH
b: ΔHAC vuông tại H có HM là trung tuyến
nên AC=2HM
Xét ΔABC vuông tại A có AH là đường cao
nên CH*CB=CA^2
=>CH*CB=4HM^2
3: Xét ΔMAN vuông tại A và ΔMHN vuông tại H có
MN chung
MA=MH
=>ΔMAN=ΔMHN
=>AN=HN
=>góc NAH=góc NHA
góc NHA+góc NHB=90 độ
góc NAH+góc NBH=90 độ
mà góc NAH=góc NHA
nên góc NBH=góc NHB
=>NH=NB=NA
=>N là trung điểm của AB
Bạn thịnh ơi bạn có cái hình không ạ
nếu có thì chụp cho mình với
a: góc BHD=góc BAD=góc BCD=90 độ
=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD
=>AHCD nội tiếp
Tâm là trung điểm của BD
b: Xét ΔBDK có
BC,DH là đường cao
BC cắt DH tại M
=>M là trực tâm
=>KM vuông góc DB
Cách làm :
Bạn chỉ cần chứng minh AEDM là HCN ;O là trung điểm của DE =>O cũng là trung điểm của AM =>O,M,A thẳng hàng
b,
Gọi P ,Q lần lượt là trung điểm của AB,AC
=> giới hạn :
*Khi M trùng với B=> O trùng với P
*Khi M trùng với C=> O trùng với Q
=> I thuộc PQ
c,
Kẻ đường cao AH
Khi M trùng với H thì AM ngắn nhất (quan hệ đường vuông góc và đường xiên)