K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Với n = 3k ta có A = 3k ( 3k + 1 ) ( 3k + 5 ) chia hết cho 3

Với n = 3k + 1 ta có A = ( 3k + 1 ) ( 3k + 2 ) ( 3k + 6 ) = A= 3 ( 3k + 1 ) ( 3k + 2 ) ( 3k + 6 ) chia hết cho 3

Với n = 3k + 2 ta có A = ( 3k + 2 ) ( 3k + 3 ) ( 3k + 7 ) = 3 ( 3k + 2 ) ( 3k + 3 ) ( 3k + 7 ) chia hết cho 3

Từ đó ta có đpm

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

29 tháng 10 2019

Mí bn giúp mk nhanh nha, mai mk hc òi

Thank you mí bé

29 tháng 10 2019

mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!

4 tháng 10 2018

Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3

Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3(3k+1)(3k+2)(k+2) chia hết cho 3

Với n=3k+2 ta có (3k+2)(3k+3)(3k+7)=3(3k+2)(k+1)(3k+7) chia hết cho 3. Từ đó ta có đpcm

4 tháng 4 2018

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

=> \(A=n\left(n+1\right)\left(n-1\right)\left(n^2-4\right)+n\left(n+1\right)\left(n-1\right)\cdot5\)

=> \(A=n\left(n+1\right)\left(n-1\right)\left(n-2\right)\left(n+2\right)+n\left(n-1\right)\left(n+1\right).5\)

Vì \(n\left(n+1\right)\left(n+2\right)\left(n-1\right)\left(n-2\right)\)là tích 5 số nguyên liên tiếp nên chia hết cho 2 và 5 => chia hết cho 2.5=10 

n(n+1)(n-1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 => 5n(n+1)(n-1) chia hết cho 2.5=10 

=> A chia hết cho 10 đpcm

19 tháng 9 2018

a,n(2n-3)-2n(n+1)

=2n2-3n-2n2-2n

=-5n⋮5

b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a;a+1;a+2 là ba số liên tiếp

nên \(A⋮3!\)

hay A chia hết cho 6