cho A = n(n+1)(n+5)(với n \(\in\)N)
chứng tỏ Achia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!
Với n=3k ta có 3k(3k+1)(3k+5) chia hết cho 3
Với n=3k+1 ta có (3k+1)(3k+2)(3k+6)=3(3k+1)(3k+2)(k+2) chia hết cho 3
Với n=3k+2 ta có (3k+2)(3k+3)(3k+7)=3(3k+2)(k+1)(3k+7) chia hết cho 3. Từ đó ta có đpcm
\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
=> \(A=n\left(n+1\right)\left(n-1\right)\left(n^2-4\right)+n\left(n+1\right)\left(n-1\right)\cdot5\)
=> \(A=n\left(n+1\right)\left(n-1\right)\left(n-2\right)\left(n+2\right)+n\left(n-1\right)\left(n+1\right).5\)
Vì \(n\left(n+1\right)\left(n+2\right)\left(n-1\right)\left(n-2\right)\)là tích 5 số nguyên liên tiếp nên chia hết cho 2 và 5 => chia hết cho 2.5=10
n(n+1)(n-1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 => 5n(n+1)(n-1) chia hết cho 2.5=10
=> A chia hết cho 10 đpcm
b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số liên tiếp
nên \(A⋮3!\)
hay A chia hết cho 6
Với n = 3k ta có A = 3k ( 3k + 1 ) ( 3k + 5 ) chia hết cho 3
Với n = 3k + 1 ta có A = ( 3k + 1 ) ( 3k + 2 ) ( 3k + 6 ) = A= 3 ( 3k + 1 ) ( 3k + 2 ) ( 3k + 6 ) chia hết cho 3
Với n = 3k + 2 ta có A = ( 3k + 2 ) ( 3k + 3 ) ( 3k + 7 ) = 3 ( 3k + 2 ) ( 3k + 3 ) ( 3k + 7 ) chia hết cho 3
Từ đó ta có đpm