bài 1 tìm giá trị nhỏ nhất
A= 2x2+10x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2x2+10x-1
A=2(x2+5x-\(\frac{1}{2}\))
A=2[x2+2x*\(\frac{5}{2}\)+(\(\frac{5}{2}\))2-(\(\frac{5}{2}\))2-\(\frac{1}{2}\)]
A=2[(x+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]
A=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)
Ta có: 2(x+\(\frac{5}{2}\))2≥0
⇒ 2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)≥\(\frac{-27}{2}\)
⇒ Amin=\(\frac{-27}{2}\) khi x+\(\frac{5}{2}\)=0⇒x=\(\frac{-5}{2}\).
Hơi dài nhưng đầy đủ nha!!!!!
\(A=x^2+4x+100\)
\(A=x^2+2.x.2+2^2+96\)
\(A=\left(x+2\right)^2+96\)
\(\left(x+2\right)^2+96\le0\)
\(\left(x+2\right)^2+96\le96\)
\(\Leftrightarrow A\le96\)
\(A_{min}\Leftrightarrow A=10\)
Dấu "=" xảy ra : \(\left(x+2\right)^20\)
\(x+2=0\)
\(x=-2\)
a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)
\(=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)
c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)
\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)
d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)
\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)
\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Mấy câu còn lại làm tương tự nhé em^^
a) Vì với mọi giá trị nguyên của x nên
Dấu “=” xảy ra khi x2 = 0 hay x = 0.
Vậy A đạt giá trị nhỏ nhất 2 021 tại x = 0.
b) Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.
Vì với mọi giá trị nguyên của x nên với mọi giá trị nguyên của x.
Do đó với mọi giá trị nguyên của x.
Suy ra với mọi giá trị nguyên của x.
Dấu “=” xảy ra khi x22 = 0 và x20 = 0 hay x = 0.
Vậy B đạt giá trị lớn nhất bằng 2 022 khi x = 0.
Bài 8:
a) A = 2020 – |x + 3|
Có: |x + 3| ≥ 0
=> A ≤ 2020
Dấu ''='' xảy ra khi: |x + 3| = 0
=> x + 3 = 0
=> x = 0 - 3 = -3
Vậy: A sẽ đạt giá trị lớn nhất khi A = 2020 tại x = -3
b/ B = |x – 7| + 68
Có: |x – 7| ≥ 0
=> B ≥ 68
Dấu ''='' xảy ra khi: |x – 7| = 0
=> x - 7 = 0
=> x = 0 + 7 = 7
Vậy:.....
Bài 8
a , A = 2020 - | x + 3 |
Ta có \(\left|x+3\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+3\right|\le0\forall x\)
\(\Leftrightarrow2020-\left|x+3\right|\le2020\forall x\)
\(\Leftrightarrow A\le2020\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+3\right|=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy MaxA = 2020 \(\Leftrightarrow x=-3\)
b) B = | x - 7 | + 68
Ta có \(\left|x-7\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-7\right|+68\ge68\forall x\)
\(\Leftrightarrow B\ge68\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x-7\right|=0\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)
Vậy Min B = 68 \(\Leftrightarrow x=7\)
~ Học tốt
# Chiyuki Fujito
" Cho hỏi 𝑆 = (6𝑚2 .......)
thì là 6 . m . 2 hay là \(6m^2\) và mấy cái kia nx"
\(A=2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left[\left(x^2+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)(Vì \(\left(x+\frac{5}{2}\right)^2\ge0\))
Dấy " = " xảy ra khi :
\(x+\frac{5}{2}=0\)
\(\Leftrightarrow x=\frac{-5}{2}\)
Vậy GTNN của A là \(\frac{-27}{2}\)khi \(x=\frac{-5}{2}\)
Hk tốt ~