Bài 3. (2 điểm). Viết phương trình y=ax+b của đường thẳng đi qua hai điểm A(1;-2) và B(2; 3).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ A (4; 3) thuộc đường thẳng y = ax + b ⇒ 3 = 4.a + b (1)
+ B (2; –1) thuộc đường thẳng y = ax + b ⇒ –1 = 2.a + b (2)
Lấy (1) trừ (2) ta được: 3 – (–1) = (4a + b) – (2a + b)
⇒ 4 = 2a ⇒ a = 2 ⇒ b = –5.
Vậy đường thẳng đi qua hai điểm A(4;3), B(2 ; –1) là y = 2x – 5.
a: vecto AB=(-1;6)
=>VTPT là (6;1)
Phương trình tham số là;
x=1-t và y=-2+6t
b: PTTQ là:
6(x-1)+1(y+2)=0
=>6x-6+y+2=0
=>6x+y-4=0
a: Thay x=1 và y=2 vào y=ax+b, ta được:
\(a\cdot1+b=2\)
=>a+b=2
Thay x=0 và y=1 vào y=ax+b, ta được:
\(a\cdot0+b=1\)
=>b=1
a+b=2
=>a=2-b
=>a=2-1=1
Vậy: phương trình đường thẳng AB là y=x+1
b: Thay x=-1 vào y=x+1, ta được:
\(y=-1+1=0=y_C\)
vậy: C(-1;0) thuộc đường thẳng y=x+1
hay A,B,C thẳng hàng
c: Thay x=3 và y=2 vào y=x+1, ta được:
\(3+1=2\)
=>4=2(sai)
=>D(3;2) không thuộc đường thẳng AB
d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)
Vì (d) vuông góc với AB nên \(a\cdot1=-1\)
=>a=-1
=>y=-x+b
Thay x=3 và y=2 vào y=-x+b, ta được:
b-3=2
=>b=5
vậy: (d): y=-x+5
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}4a+b=3\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3-4a=-5\end{matrix}\right.\)