K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 10 2019

\(y=x^4+4x^3+4x^2-x^2-2x+2\)

\(y=\left(x^2+2x\right)^2-\left(x^2+2x\right)+2\)

Đặt \(x^2+2x=t\)

Với \(x\in\left[-2;4\right]\Rightarrow t\in\left[-1;24\right]\)

Xét \(f\left(t\right)=t^2-t+2\) trên \(\left[-1;24\right]\)

Ta có \(-\frac{b}{2a}=\frac{1}{2}\)

\(f\left(-1\right)=4\) ; \(f\left(\frac{1}{2}\right)=\frac{7}{4}\) ; \(f\left(24\right)=554\)

\(\Rightarrow y_{max}=554\) khi \(t=24\Leftrightarrow x=4\)

\(y_{min}=\frac{7}{4}\) khi \(t=\frac{1}{2}\Leftrightarrow x=\frac{-2\pm\sqrt{2}}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

31 tháng 7 2018

TXĐ: D = R

y ' = 4 x 3 - 6 x

y’ = 0 ⇔ 2x.(2x2 – 3) = 0 ⇔ Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

+ Xét hàm số trên [0 ; 3] :

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

+ Xét hàm số trên [2; 5].

y(2) = 6;

y(5) = 552.

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

5 tháng 6 2019

+ Xét hàm số y= x4- 4x3+ 4x2+ a  trên đoạn [ 0; 2].

Ta có đạo hàm y’ = 4x3-12x2+ 8x,   y ' = 0

Khi đó;  y( 0) = y( 2) = a; y( 1) = a+ 1

+ Nếu a≥ 0  thì  M= a+ 1,m = a.

 Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3  thỏa mãn

+ Nếu a≤ - 1 thì  M = a = - a ,   m = a + 1 = - a - 1 .

 Để  M≤ 2m thì a≤ -2,  suy ra a a ∈ - 2 ; - 3   

Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.

Chọn B.

 

21 tháng 2 2019

Chọn B

Xét g(x) =  x 4 - 4 x 3 + 4 x 2 + a  với x  ∈ [0;2]

Bảng biến thiên g(x)

Trường hợp 1: a  ≥ 0.  Khi đó M = a + 1; m = a

Ta có 2m  Với 

Trường hợp 2:  Khi đó M = -a; m = -(a+1)

Trường hợp 3: -1 < a < 0. Với 

Vậy có 5 giá trị a cần tìm.

22 tháng 1 2017

18 tháng 9 2019

Đáp án A

11 tháng 12 2017

Đáp án D

Xét hàm số utLXtnAHAXZg.png.

WVXeUZNSMTh6.png;

3Sq4PZtpXS6W.pngaJxVp1I4jPOj.png

pdAOjpZtd3mu.png

Bảng biến thiên

KsJ8gONRGnYh.png

Do u7LIT07hrkst.png nên 3s5KLaEXd64W.png suy ra FtKIVcspW3Mr.png.

Suy ra jEoo7242PpDN.png.

Nếu VXLD4502NCDy.png thì 9TAGuySWhRVj.png, SNqHqtX6l55p.png

hUnCorl2lwHR.png3MBkHnwPFHwQ.png9iZ9VMgxf0gq.png.

Nếu G522RBPBNWuD.png thì Wfh9fXnx1v2l.png, VhHGWoXclYji.png

bvOGxUgRW9pV.png4MMjwUo8ealS.pnglE7ed3Pn109h.png.

Do đó tqJseeuLC8G9.png hoặc nlXOAhsXYCz8.png, do a nguyên và thuộc đoạn JHMlrDo85yhC.png nên ufkMbtKePCGT.png.

29 tháng 4 2017

Bảng biến thiên

Chọn C.

30 tháng 4 2018

Đáp án D.

Sử dụng máy tính cầm tay chức năng TABLE với thiết lập Start ‒5; End 5; Step 1 thì ta có

Từ bảng giá trị ta kết luận được giá trị lớn nhất của hàm số đạt được là 400 khi x = − 5 .

Từ bảng giá trị trên ta chưa thể kết luận được giá trị nhỏ nhất của hàm số.

Ta thấy  x 3 + 3 x 2 − 72 x + 90 ≥ 0, ∀ x ∈ ℝ   .

Dấu bằng xảy ra khi x 3 + 3 x 2 − 72 x + 90 = 0 .

Trong ba nghiệm trên ta thấy nghiệm  x 3 ∈ − 5 ; 5   . Từ đây ta có thể kết luận giá trị nhỏ nhất của hàm số đạt được là 0 khi x = x 3 .

 

Vậy tổng cần tìm là 400. Ta chọn D.

 

17 tháng 5 2018

Chọn: D

Ta có:

Tính y 0 = 1 , y 2 = - 3 , y 6 2 = 13 4

Vậy giá trị lớn nhất của hàm số đạt được trong  0 ; 2 là  13 4