Cho Tam giác ABC vuông tại A có AH đường cao. Biết AB=15 và BC=25
a) Tính độ dài BH,HC,AH
b)Trên tia HA lấy điểm E sao cho A là trung điểm HE. Kẻ BD vuông góc với EC tại D.Tính số đo góc CBD.
c) Gọi M là giao điểm BD và AH.Chứng minh:M là trung điểm AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét tam giác ACH và tam giác DCH có:
HA=HD(gt)
góc CHA= góc CHD(vì CH\(\perp\)AD)
HC chung => tam giác ACH=tam giác DCH(c.g.c)
tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C
b,xét tam giác AHB và tam giác DHE có:
góc BHA= góc DHE( đối đỉnh)
HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)
gọi giao điểm DE với AC là K
vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA
mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK
lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)
hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC
ăn cơm đã ý c tí mik làm sau
mình trả lời trước câu b:
Bạn c/m tam giác AHM = tam giác DHM (ccc) => HM là p/g góc AHD => góc AHM =1/2.(góc AHD) = 90/2 =45
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
a: Xét ΔBAH có ED//AH
nên BE/EA=BD/DH
b: Xét ΔOED và ΔOHA có
góc OED=góc OHA
góc EOD=góc HOA
=>ΔOED đồng dạng với ΔOHA
=>OE/OH=OD/OA
=>OE/EH=OD/DA
ý 1 câu a )
có ED vuông góc BC ; AH vuông góc BC => ED//AH => tam giác CDE đồng dạng vs tam giác CHA ( talet) (1)
xét tam giác CHA và tam giác CAB có CHA=CAB=90 độ ; C chung => tam giác CHA đồng dạng vs tam giác CAB ( gg) (2)
từ (1) và (2) =>tam giác CDE đồng dạng tam giác CAB ( cùng đồng dạng tam giác CHA )
có tam giác CDE đồng dạng tam giác CAB (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)
xét tam giác BAC và tam giác ADC có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC ( trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-
a: Xét tứ giác EABD có
góc EAB+góc EDB=180 độ
=>EABD nội tiếp
=>góc EAD=góc EBD
Xét ΔBEC và ΔADC có
góc C chung
góc EBC=góc DAC
=>ΔBEC đồng dạng với ΔADC
b: EABD nội tiếp
=>góc AEB=góc ADB=45 độ
ΔAEB vuông tại A có góc AEB=45 độ
nên ΔAEB vuông cân tại A
=>góc ABM=45 độ
ΔAEB cân tại A
mà AM là đường trung tuyến
nên AM vuông góc BE
góc AMB=góc AHB=90 độ
=>AMHB nội tiếp
=>gócAHM=góc ABM=45 độ
a.BH=9 HC=16 HA=12
b.
tamg BDC đồng dạng EHC=>g CBD= g HEC
tan HEC=HC\EH=HC\2AH=25\2.12=25\24
=>HEC=46 độ 10=CBD