x^4+ 2016x^2 +2017x +2016 =?
Các bạn giúp với :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Với \(x=2016\Rightarrow2017=x+1\)
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)
\(A=2025-x=9\)
b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:
\(Q=2017-2016+2015-2014+...+3-2+1\)
\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)
\(Q=1009\)
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4+x^2+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^4+2x^2+1-x^2\right)+2016\left(x^2+x+1\right)\)
\(=\left[\left(x^2+1\right)-x^2\right]+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2017\right)\)
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)
\(=x.\left(x^3-1\right)+2007.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2007.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)
Ta có: \(\left|x+\frac{1}{2015}\right|\ge0\)
\(\left|x+\frac{2}{2015}\right|\ge0\)
...
\(\left|x+\frac{2016}{2015}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{2015}\right|+\left|x+\frac{2}{2015}\right|+...+\left|x+\frac{2016}{2015}\right|\ge0\)
\(\Rightarrow2017x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{2015}\right|+\left|x+\frac{2}{2015}\right|+...+\left|x+\frac{2016}{2015}\right|=x+\frac{1}{2015}+x+\frac{2}{2015}+...+x+\frac{2016}{2015}=2017x\)
\(\Rightarrow2016x+\left(\frac{1}{2015}+\frac{2}{2015}+...+\frac{2016}{2015}\right)=2017x\)
\(\Rightarrow x=\frac{1+2+...+2016}{2015}\)
Vậy \(x=\frac{1+2+...+2016}{2015}\)
Bạn cần số cụ thể thì tính ra nhé!
Đặt 2017x-2016=a; 2016x-2015=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow x\in\left\{\dfrac{2016}{2017};\dfrac{2015}{2016};\dfrac{4031}{4033}\right\}\)
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
Nhớ k mk nha
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
chúc cậu hok tốt _@
2017 = 2016 + 1 = x + 1
suy ra 2017x15 = x16 + x15
2017x14 = x15 + x14
....
từ đó ta dễ tính ra A
\(x^4+2016x^2+2017x+2016\)
\(=x^4+2016x^2+2016x+x+2016\)
\(=\left(x^4+x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x^3+1\right)+2016\left(x^2+x+1\right)\)
\(=x\left(x+1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+2016\right)\)