Cho x,y,z > 0. Tìm GTNN của A=(x+y+z)(1/x + 1/y + 1/z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy)
= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]
= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz)
Suy ra:
P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)
≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2
Vậy P min = 9/2
Dấu = xra khi x = y = z = 1
Bài 1:
Ta có
A =x/(x+1) +y/(y+1)+z/(z+1)
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1)
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ]
B = 1/(x+1)+1/(y+1) +1/(z+1)
Đặt x+1=a; y+1=b;z+1 =c
=>a+b+c=4
4B=4(1/a+1/b+1/c)
B= (a+b+c) (1/a+1/b+1/c)
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a)
Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab
=> a/b+b/a ≥2 dấu "=" khi a=b
Tương tự có
a/c+c/a ≥2 ;b/c+c/b ≥2
=>4B ≥3+2+2+2=9
=>B ≥ 9/4
=>A ≤ 3-9/4 = 3/4
Vậy max A =3/4 khi a=b=c
=>x=y=z =1/3
Bài 2:
Giúp tui nha
đề bài như này chớ
\(\frac{x}{1+y^2}\)\(+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\)
ttu vt\(\ge x+y+z-\left(\frac{xy+yz+xz}{2}\right)=3-\frac{\left(xy+xz+yz\right)}{2}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}=3-\frac{3}{2}=\frac{3}{2}\)
dau = xay ra khi x=y=z=1
Ta có :
\(\frac{x}{1}+y^2+\frac{y}{1}+z^2+\frac{z}{1}+x^2\)
\(\Rightarrow\)\(\left(\frac{x}{1}+\frac{y}{1}+\frac{z}{1}\right)+\left(x^2+y^2+z^2\right)\ge3\)
\(\Rightarrow\)\(3+\left(x^2+y^2+z^2\right)\ge3\)
\(\Rightarrow\)\(x^2+y^2+z^2\ge0\)
Dấu "=" xảy ra khi \(x=y=z=0\)
Vậy gái trị nhỏ nhất của \(P=\frac{x}{1}+y^2+\frac{y}{1}+z^2+\frac{z}{1}+x^2=0\)
\(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
A=1+y/x+z/x+x/y+1+z/y+x/z+y/z+1
A=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)
với x,y,z > 0 Áp dụng BDT cauchy ta có
\(\hept{\begin{cases}\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\\\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\\\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\end{cases}}\)
=> A\(\ge\)3+2+2+2=9
( Dấu "=" xảy ra <=> x=y=z )
Vậy GTNN của A là 9 <=> x=y=z