1. A=1+5 mũ 2+5 mũ 3+.......+5 mu 100
a tính tổng A
b tìm số n thuộc N Sao cho 4A +1= 5 mũ n
c cho B =5 mũ 101 chứng minh rằng A bé hơn B phần 4
2 . 1.2.3+2.3.4+.....+2013.2014.2015
Giúp em với ạ 20 phút sau là phải đi học rồi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Viết thế này cho dễ hiểu nhé :
Câu 1 : 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
Câu 2 :
2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
Câu 3:
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath
1
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)
\(\text{⇒1 ⋮d}\)
\(\text{⇒d = 1}\)
Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)
Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.
\(M=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)
mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
mk chỉ giúp phần a nha
B=1+ 4+42 +....+ 499
4B=4+ 42+43+...+4100
4B-B=4100-1
3B=4100-1
B= 1 + 4+4 MŨ 2+.....+4 MŨ 99
4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100
4B-B=4 MŨ 100- 1
3B=4 mũ 100-1
Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n
Suy ra 4 mũ 100=4 mũ n
suy ran=100
\(A=1+5+5^2+...+5^{100}\)
\(5A=5+5^2+...+5^{100}+5^{101}\)
\(5A-A=-1+5^{101}\)
\(4A=5^{101}-1\Rightarrow A=\frac{5^{101}-1}{4}\)
\(4A+1=5^n\Leftrightarrow4\left(\frac{5^{101}-1}{4}\right)+1=5^n\)
\(\Leftrightarrow5^{101}=5^n\Rightarrow n=101\)
\(A=\frac{5^{101}-1}{4}=\frac{5^{101}}{4}-\frac{1}{4}=\frac{B}{4}-\frac{1}{4}< \frac{B}{4}\)
\(C=1.2.3+2.3.4+...+2013.2014.2015\)
\(4C=1.2.3.4+2.3.4.4+...+2013.2014.2015.4\)
\(4C=1.2.3\left(4-0\right)+2.3.4.\left(5-1\right)+...+2013.2014.2015\left(2016-2012\right)\)
\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+2013.2014.2015.2016-2012.2013.2014.2015\)
\(4C=2013.2014.2015.2016\)
\(C=\frac{2013.2014.2015.2016}{4}=...\)
Giúp em nhanh với ạ