\(\left(x+2\right)^4+\left(x+8\right)^4-272\)
Phân tích đa thức thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)
\(=\left(x^2+10x+16+4\right)^2\)
\(=\left(x^2+10+20\right)^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right)
\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)
\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)
\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1)
Đặt \(x^2-10x+20=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-16+16\)
\(=t^2\)Thay \(t=x^2-10x+20\)ta được :
\(\left(x^2-10x+20\right)^2\)
\(=\left(x^2-2.5.x+25-25+20\right)^2\)
\(=\left[\left(x-5\right)^2-5\right]^2\)
\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)
\(S=x^6-8\)
\(S=\left(x^2\right)^3-2^3\)
\(S=\left(x^2-2\right)\left(x^4+2x^2+4\right)\)
⇒ Chọn C
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)
\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)
Chúc bạn học tốt.
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)
\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)
\(\Rightarrow\left(x^2+10x+20\right)^2\)
`(x+3)^4+(x+5)^4-2`
`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`
`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`
`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`
`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`
`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`
`=(x+4)(2x^3+24x^2+108x+176)`
Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
a: \(5x\left(2x+3\right)+6x+9\)
\(=5x\left(2x+3\right)+\left(6x+9\right)\)
\(=5x\left(2x+3\right)+3\left(2x+3\right)\)
\(=\left(2x+3\right)\left(5x+3\right)\)
b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+4\right)\left(3x+48+5\right)\)
=(x+4)(3x+53)
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
dùng tam giác PASCAL để khai triển biểu thức bận 4
hệ số là 1-4-6-4-1
Tớ chưa học đến cậu êy