cho tam giác abc ah vuông góc với bc , hai trung tuyến bm,cn vuông góc với nhau.cm 1/bm^2+1/cn^2=4/ah^2
mong mn giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)
=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)
=> \(\widehat{ABH}=\widehat{ACK}\)
b/ Xét t/g ABH và t/g ACK có
AB = AC
\(\widehat{ABH}=\widehat{ACK}\)
BH = CK
=> t/g ABH = t/g ACK (c.g.c)
=> AH = AK
=> t/g AHK cân tại A
c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có
BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)
=> t/g BHM = t/g CKN (ch-gn)
=> BM = CNd/ Có
AH = AK
HM = KN (t.g BHM = t/g CKN)
=> AM =AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)
Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)
=> \(\widehat{AMN}=\widehat{AHK}\)
Mà 2 góc này đồng vị
=> MN// HK
a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)
b) Xét ΔABH và ΔACK có
AB=AC(ΔABC cân tại A)
\(\widehat{ABH}=\widehat{ACK}\)(cmt)
BH=CK(gt)
Do đó: ΔABH=ΔACK(c-g-c)
nên AH=AK(hai cạnh tương ứng)
Xét ΔAHK có AH=AK(cmt)
nên ΔAHK cân tại A(Định nghĩa tam giác cân)
c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có
BH=CK(gt)
\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)
Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)
Suy ra: BM=CN(hai cạnh tương ứng)
d) Ta có: ΔMHB=ΔNKC(cmt)
nên MH=NK(hai cạnh tương ứng)
Ta có: AM+MH=AH(M nằm giữa A và H)
AN+NK=AK(N nằm giữa A và K)
mà AK=AH(cmt)
và MH=NK(cmt)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)
Ta có: ΔAHK cân tại A(cmt)
nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)
mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị
nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
Do đó: ΔABD=ΔECD
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra: BH=CH
b: Ta có: BH=CH
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=12(cm)
\(\Leftrightarrow AG=8\left(cm\right)\)
c: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC
Dùng hình bạn Ngọc nhé (khỏe khỏi phải vẽ :)
Xét \(\Delta BOC\)và \(\Delta NBC\)có
\(\widehat{OCB}\)chung
\(\widehat{BOC}=\widehat{NBC}=90\)
\(\Rightarrow\Delta BOC\)đồng dạng \(\Delta NBC\)
\(\Rightarrow\frac{BC}{NC}=\frac{OC}{BC}\Leftrightarrow BC^2=NC.OC\)
\(\Leftrightarrow BC^2=NC.\frac{2}{3}NC=\frac{2NC^2}{3}\)(Vì O là trọng tâm)
\(\Rightarrow NC=\sqrt{\frac{3}{2}}BC=\frac{\sqrt{3}.20132014}{\sqrt{2}}\)