K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)

\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)

\(\Leftrightarrow-7x+12x=20+2\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\dfrac{22}{5}\)

tick cho mk nha

22 tháng 7 2017

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)

\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)

\(\Leftrightarrow10x^2-19x-33=0\)

\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)

\(x_1=3;x_2=\dfrac{-11}{10}\)

Tick cho mk nha

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x+25=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

b) Ta có: \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)

d) Ta có: \(x^3-x=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

e) Ta có: \(27x^3-27x^2+9x-1=1\)

\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)

\(\Leftrightarrow\left(3x-1\right)^3=1\)

\(\Leftrightarrow3x-1=1\)

\(\Leftrightarrow3x=2\)

hay \(x=\dfrac{2}{3}\)

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

25 tháng 1 2021

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

2 tháng 9 2016

Bài 1:

a)(4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-x-6-12x2+28x+5+1

=27x

b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

 

2 tháng 9 2016

Bài 2:

a)3x(x-4)-x(5+3x)=-34

=>3x2-12x-3x2-5x=-34

=>-17x=-34

=>x=2

Vậy x=2

b)(3x+1)2+(5x-2)2=34(x+2)(x-2)

=>9x2+6x+1+25x2-20x+4=34(x2-4)

=>34x2-14x+5-34x2+136=0

=>-14x+141=0

=>-14x=-141

=>x=\(\frac{141}{14}\)

Vậy x=\(\frac{141}{14}\)

c)x3+3x2+3x+28=0

=>x3-x2+7x+4x2-4x+28=0

=>x(x2-x+7)+4(x2-x+7)=0

=>(x+4)(x2-x+7)=0

\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)

=>(2) vô nghiệm

Vậy x=-4

26 tháng 2 2021

a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(TH_1:3x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

\(TH_2:-2x-7=0\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

b) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(TH_1:x=0\)

\(TH_2:x-1=0\)

\(\Leftrightarrow x=1\)

\(TH_3:2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)

\(TH_1:3x+4=0\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

\(TH_2:2x-4=0\)

\(\Leftrightarrow x=2\)

Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Rightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x-9x=-6-16+12\)

\(\Leftrightarrow11x=-10\)

\(\Leftrightarrow x=-\dfrac{10}{11}\)

Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)

26 tháng 2 2021

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow3x+1=5x+8\)

\(\Leftrightarrow3x-5x=8-1\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=\dfrac{-7}{2}\)

Vậy \(X=\dfrac{-7}{2}\)

b) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow9x^2-16-3x^2-4x=0\)

\(\Leftrightarrow6x^2-4x-16=0\)

\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Leftrightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x+16-12-9x+6=0\)

\(\Leftrightarrow11x+10=0\)

\(\Leftrightarrow x=\dfrac{-10}{11}\)

Vậy \(x=\dfrac{-10}{11}\)