Tổng của 7 số tự nhiên phân biệt khác 0 bằng 142, hỏi ước chung lớn nhất của 7 số đó có thể nhận giá trị lớn nhất bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 10 số tự nhiên đó là: \(a_1;a_2;a_3;a_4;...;a_{10}\) có d là ƯCLN
\(\Rightarrow\left\{{}\begin{matrix}a_1=dk_1\\a_2=dk_2\\...\\a_{10}=dk_{10}\end{matrix}\right.\left(k_1;k_2;k_3;...;k_{10}\in N|k_1\ge1;k_2\ge1;...\right)\)
Ta có: \(a_1+a_2+a_3+...+a_{10}=280\) (đề bài)
\(\Rightarrow dk_1+dk_2+dk_3+...+dk_{10}=280\)
\(\Rightarrow d\left(k_1+k_2+k_3+...+k_{10}\right)=280\)
Đặt: \(k_1+k_2+k_3+...+k_{10}=n\left(n\in N\right)\)
\(\Rightarrow d.n=280\) vậy để d là số lớn nhất thì n phải nhỏ nhất
Do: \(\left\{{}\begin{matrix}k_1\ge1\\k_2\ge1\\...\\k_{10}\ge1\end{matrix}\right.\Rightarrow n=k_1+k_2+k_3+...+k_{10}\ge1+1+...+1=10\)
Số n nhỏ nhất là 10 khi đó số d lớn nhất là:
\(d_{max}=\dfrac{280}{10}=28\)
Vậy: ...
Gọi năm số tự nhiên đã cho là a1,a2,a3,a4,a5, ƯCLN( a1,a2,a3,a4,a5) là d. Ta có:
a1 = dk1 , a2 = dk1 , a3 = dk1 , a4 = dk4 , a5 = dk5
Nên: a1+a2+a3+a4+a5 = d(k1+ k2 + k3+ k4 + k5 )
Do đó: 156 = d(k1+ k2 + k3+ k4 + k5 )
d là ước của 156
k1+ k2 + k3+ k4 + k5 5 nên 5d 156 d 31
156 = 22.3.13
Ước lớn nhất của 156 không vượt quá 31 là 26
Giá trị lớn nhất của d là 26.
( xảy ra khi chẳng hạn a1=a2=a3=a4 = 26, a5 = 52 ).
ƯC lớn nhất bằng 78 thì phải nếu đúng cho mình **** nha bạn thân
http://olm.vn/hoi-dap/question/89669.html http://olm.vn/hoi-dap/question/89629.html
Gọi năm số tự nhiên đã cho là a1,a2,a3,a4,a5, ƯCLN( a1,a2,a3,a4,a5) là d. Ta có:
a1 = dk1 , a2 = dk1 , a3 = dk1 , a4 = dk4 , a5 = dk5
Nên: a1+a2+a3+a4+a5 = d(k1+ k2 + k3+ k4 + k5 )
Do đó: 156 = d(k1+ k2 + k3+ k4 + k5 )
d là ước của 156
k1+ k2 + k3+ k4 + k5 5 nên 5d 156 d 31
156 = 22.3.13
Ước lớn nhất của 156 không vượt quá 31 là 26
Giá trị lớn nhất của d là 26.
( xảy ra khi chẳng hạn a1=a2=a3=a4 = 26, a5 = 52 ).