Cho 3 điểm A , B , C và 3 số thực a, b , c có a+b+c # 0
a. Tìm tập hợp điểm J sao cho \(a\overrightarrow{JA}+b\overrightarrow{JB}+c\overrightarrow{JC}=\overrightarrow{0}\)
b. C/m ∀M ta có \(a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}=\left(a+b+c\right)\overrightarrow{MJ}\)
c. M , N là 2 điểm thỏa mãn \(a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}=\overrightarrow{MN}\) . C/m M , N thay đổi thì đường thẳng MN đi qua I điểm cố định